Visible to the public Biblio

Filters: Keyword is virtual networks  [Clear All Filters]
2018-02-02
Ghosh, U., Chatterjee, P., Tosh, D., Shetty, S., Xiong, K., Kamhoua, C..  2017.  An SDN Based Framework for Guaranteeing Security and Performance in Information-Centric Cloud Networks. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). :749–752.

Cloud data centers are critical infrastructures to deliver cloud services. Although security and performance of cloud data centers have been well studied in the past, their networking aspects are overlooked. Current network infrastructures in cloud data centers limit the ability of cloud provider to offer guaranteed cloud network resources to users. In order to ensure security and performance requirements as defined in the service level agreement (SLA) between cloud user and provider, cloud providers need the ability to provision network resources dynamically and on the fly. The main challenge for cloud provider in utilizing network resource can be addressed by provisioning virtual networks that support information centric services by separating the control plane from the cloud infrastructure. In this paper, we propose an sdn based information centric cloud framework to provision network resources in order to support elastic demands of cloud applications depending on SLA requirements. The framework decouples the control plane and data plane wherein the conceptually centralized control plane controls and manages the fully distributed data plane. It computes the path to ensure security and performance of the network. We report initial experiment on average round-trip delay between consumers and producers.

2017-03-07
Bronzino, Francesco, Raychaudhuri, Dipankar.  2016.  Abstractions and Solutions to Support Smart-objects in the Future Internet. Proceedings of the 2Nd Workshop on Experiences in the Design and Implementation of Smart Objects. :41–46.

As the number of devices that gain connectivity and join the category of smart-objects increases every year reaching unprecedented numbers, new challenges are imposed on our networks. While specialized solutions for certain use cases have been proposed, more flexible and scalable new approaches to networking will be required to deal with billions or trillions of smart objects connected to the Internet. With this paper, we take a step back looking at the set of basic problems that are posed by this group of devices. In order to develop an analysis on how these issues could be approached, we define which fundamental abstractions might help solving or at least reducing their impact on the network by offering support for fundamental matters such as mobility, group based delivery and support for distributed computing resources. Based on the concept of named-objects, we propose a set of solutions that network and show how this approach can address both scalability and functional requirements. Finally, we describe a comprehensive clean-slate network architecture (MobiityFirst) which attempts to realize the proposed capabilities.

2017-02-14
N. Nakagawa, Y. Teshigawara, R. Sasaki.  2015.  "Development of a Detection and Responding System for Malware Communications by Using OpenFlow and Its Evaluation". 2015 Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec). :46-51.

Advanced Persistent Threat (APT) attacks, which have become prevalent in recent years, are classified into four phases. These are initial compromise phase, attacking infrastructure building phase, penetration and exploration phase, and mission execution phase. The malware on infected terminals attempts various communications on and after the attacking infrastructure building phase. In this research, using OpenFlow technology for virtual networks, we developed a system of identifying infected terminals by detecting communication events of malware communications in APT attacks. In addition, we prevent information fraud by using OpenFlow, which works as real-time path control. To evaluate our system, we executed malware infection experiments with a simulation tool for APT attacks and malware samples. In these experiments, an existing network using only entry control measures was prepared. As a result, we confirm the developed system is effective.