Biblio
Every so often Humans utilize non-verbal gestures (e.g. facial expressions) to express certain information or emotions. Moreover, countless face gestures are expressed throughout the day because of the capabilities possessed by humans. However, the channels of these expression/emotions can be through activities, postures, behaviors & facial expressions. Extensive research unveiled that there exists a strong relationship between the channels and emotions which has to be further investigated. An Automatic Facial Expression Recognition (AFER) framework has been proposed in this work that can predict or anticipate seven universal expressions. In order to evaluate the proposed approach, Frontal face Image Database also named as Japanese Female Facial Expression (JAFFE) is opted as input. This database is further processed with a frequency domain technique known as Discrete Cosine transform (DCT) and then classified using Artificial Neural Networks (ANN). So as to check the robustness of this novel strategy, the random trial of K-fold cross validation, leave one out and person independent methods is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.
Now-a-days, video steganography has developed for a secured communication among various users. The two important factor of steganography method are embedding potency and embedding payload. Here, a Multiple Object Tracking (MOT) algorithmic programs used to detect motion object, also shows foreground mask. Discrete wavelet Transform (DWT) and Discrete Cosine Transform (DCT) are used for message embedding and extraction stage. In existing system Least significant bit method was proposed. This technique of hiding data may lose some data after some file transformation. The suggested Multiple object tracking algorithm increases embedding and extraction speed, also protects secret message against various attackers.
Internet of Things refers to a paradigm consisting of a variety of uniquely identifiable day to day things communicating with one another to form a large scale dynamic network. Securing access to this network is a current challenging issue. This paper proposes an encryption system suitable to IoT features. In this system we integrated the fuzzy commitment scheme in DCT-based recognition method for fingerprint. To demonstrate the efficiency of our scheme, the obtained results are analyzed and compared with direct matching (without encryption) according to the most used criteria; FAR and FRR.
This paper is nominated for an image protection scheme in the area of government sectors based on discrete cosine transformation with digital watermarking scheme. A cover image has broken down into 8 × 8 non overlapped blocks and transformed from spatial domain into frequency domain. Apply DCT version II of the DCT family to each sub block of the original image. Then embed the watermarking image into the sub blocks. Apply IDCT of version II to send the image through communication channel with watermarked image. To recover the watermarked image, apply DCT and watermarking formula to the sub blocks. The experimental results show that the proposed watermarking procedure gives high security and watermarked image retrieved successfully.