Visible to the public Biblio

Filters: Keyword is message transmission  [Clear All Filters]
2020-09-04
Moe, Khin Su Myat, Win, Thanda.  2018.  Enhanced Honey Encryption Algorithm for Increasing Message Space against Brute Force Attack. 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :86—89.
In the era of digitization, data security is a vital role in message transmission and all systems that deal with users require stronger encryption techniques that against brute force attack. Honey encryption (HE) algorithm is a user data protection algorithm that can deceive the attackers from unauthorized access to user, database and websites. The main part of conventional HE is distribution transforming encoder (DTE). However, the current DTE process using cumulative distribution function (CDF) has the weakness in message space limitation because CDF cannot solve the probability theory in more than four messages. So, we propose a new method in DTE process using discrete distribution function in order to solve message space limitation problem. In our proposed honeywords generation method, the current weakness of existing honeywords generation method such as storage overhead problem can be solved. In this paper, we also describe the case studies calculation of DTE in order to prove that new DTE process has no message space limitation and mathematical model using discrete distribution function for DTE process facilitates the distribution probability theory.
2020-06-22
Cai, Huili, Liu, Xiaofeng, Cangelosi, Angelo.  2019.  Security of Cloud Intelligent Robot Based on RSA Algorithm and Digital Signature. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :1453–1456.
Considering the security of message exchange between service robot and cloud, we propose to authenticate the message integrity based on RSA algorithm and digital signature. In the process of message transmission, RSA algorithm is used to encrypt message for service robot and decrypt message for cloud. The digital signature algorithm is used to authenticate the source of the message. The results of experiment have proved that the proposed scheme can guarantee the security of message transmission.
2019-12-02
Wang, Dinghua, Feng, Dongqin.  2018.  Intrusion Detection Model of SCADA Using Graphical Features. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1208–1214.
Supervisory control and data acquisition system is an important part of the country's critical infrastructure, but its inherent network characteristics are vulnerable to attack by intruders. The vulnerability of supervisory control and data acquisition system was analyzed, combining common attacks such as information scanning, response injection, command injection and denial of service in industrial control systems, and proposed an intrusion detection model based on graphical features. The time series of message transmission were visualized, extracting the vertex coordinates and various graphic area features to constitute a new data set, and obtained classification model of intrusion detection through training. An intrusion detection experiment environment was built using tools such as MATLAB and power protocol testers. IEC 60870-5-104 protocol which is widely used in power systems had been taken as an example. The results of tests have good effectiveness.
2019-09-09
Almohaimeed, A., Asaduzzaman, A..  2019.  A Novel Moving Target Defense Technique to Secure Communication Links in Software-Defined Networks. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–4.
Software-defined networking (SDN) is a recently developed approach to computer networking that brings a centralized orientation to network control, thereby improving network architecture and management. However, as with any communication environment that involves message transmission among users, SDN is confronted by the ongoing challenge of protecting user privacy. In this “Work in Progress (WIP)” research, we propose an SDN security model that applies the moving target defense (MTD) technique to protect communication links from sensitive data leakages. MTD is a security solution aimed at increasing complexity and uncertainty for attackers by concealing sensitive information that may serve as a gateway from which to launch different types of attacks. The proposed MTD-based security model is intended to protect user identities contained in transmitted messages in a way that prevents network intruders from identifying the real identities of senders and receivers. According to the results from preliminary experiments, the proposed MTD model has potential to protect the identities contained in transmitted messages within communication links. This work will be extended to protect sensitive data if an attacker gets access to the network device.
2017-02-14
A. A. Zewail, A. Yener.  2015.  "The two-hop interference untrusted-relay channel with confidential messages". 2015 IEEE Information Theory Workshop - Fall (ITW). :322-326.

This paper considers the two-user interference relay channel where each source wishes to communicate to its destination a message that is confidential from the other destination. Furthermore, the relay, that is the enabler of communication, due to the absence of direct links, is untrusted. Thus, the messages from both sources need to be kept secret from the relay as well. We provide an achievable secure rate region for this network. The achievability scheme utilizes structured codes for message transmission, cooperative jamming and scaled compute-and-forward. In particular, the sources use nested lattice codes and stochastic encoding, while the destinations jam using lattice points. The relay decodes two integer combinations of the received lattice points and forwards, using Gaussian codewords, to both destinations. The achievability technique provides the insight that we can utilize the untrusted relay node as an encryption block in a two-hop interference relay channel with confidential messages.