Visible to the public Biblio

Filters: Keyword is Steady-state  [Clear All Filters]
2017-03-08
Poveda, J. I., Teel, A. R..  2015.  Event-triggered based on-line optimization for a class of nonlinear systems. 2015 54th IEEE Conference on Decision and Control (CDC). :5474–5479.

We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.

2017-02-14
M. Grottke, A. Avritzer, D. S. Menasché, J. Alonso, L. Aguiar, S. G. Alvarez.  2015.  "WAP: Models and metrics for the assessment of critical-infrastructure-targeted malware campaigns". 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE). :330-335.

Ensuring system survivability in the wake of advanced persistent threats is a big challenge that the security community is facing to ensure critical infrastructure protection. In this paper, we define metrics and models for the assessment of coordinated massive malware campaigns targeting critical infrastructure sectors. First, we develop an analytical model that allows us to capture the effect of neighborhood on different metrics (infection probability and contagion probability). Then, we assess the impact of putting operational but possibly infected nodes into quarantine. Finally, we study the implications of scanning nodes for early detection of malware (e.g., worms), accounting for false positives and false negatives. Evaluating our methodology using a small four-node topology, we find that malware infections can be effectively contained by using quarantine and appropriate rates of scanning for soft impacts.

2015-05-06
Liming Shi, Yun Lin.  2014.  Convex Combination of Adaptive Filters under the Maximum Correntropy Criterion in Impulsive Interference. Signal Processing Letters, IEEE. 21:1385-1388.

A robust adaptive filtering algorithm based on the convex combination of two adaptive filters under the maximum correntropy criterion (MCC) is proposed. Compared with conventional minimum mean square error (MSE) criterion-based adaptive filtering algorithm, the MCC-based algorithm shows a better robustness against impulsive interference. However, its major drawback is the conflicting requirements between convergence speed and steady-state mean square error. In this letter, we use the convex combination method to overcome the tradeoff problem. Instead of minimizing the squared error to update the mixing parameter in conventional convex combination scheme, the method of maximizing the correntropy is introduced to make the proposed algorithm more robust against impulsive interference. Additionally, we report a novel weight transfer method to further improve the tracking performance. The good performance in terms of convergence rate and steady-state mean square error is demonstrated in plant identification scenarios that include impulsive interference and abrupt changes.

Arablouei, R., Werner, S., Dogancay, K..  2014.  Analysis of the Gradient-Descent Total Least-Squares Adaptive Filtering Algorithm. Signal Processing, IEEE Transactions on. 62:1256-1264.

The gradient-descent total least-squares (GD-TLS) algorithm is a stochastic-gradient adaptive filtering algorithm that compensates for error in both input and output data. We study the local convergence of the GD-TLS algoritlun and find bounds for its step-size that ensure its stability. We also analyze the steady-state performance of the GD-TLS algorithm and calculate its steady-state mean-square deviation. Our steady-state analysis is inspired by the energy-conservation-based approach to the performance analysis of adaptive filters. The results predicted by the analysis show good agreement with the simulation experiments.

Bhotto, M.Z.A., Antoniou, A..  2014.  Affine-Projection-Like Adaptive-Filtering Algorithms Using Gradient-Based Step Size. Circuits and Systems I: Regular Papers, IEEE Transactions on. 61:2048-2056.

A new class of affine-projection-like (APL) adaptive-filtering algorithms is proposed. The new algorithms are obtained by eliminating the constraint of forcing the a posteriori error vector to zero in the affine-projection algorithm proposed by Ozeki and Umeda. In this way, direct or indirect inversion of the input signal matrix is not required and, consequently, the amount of computation required per iteration can be reduced. In addition, as demonstrated by extensive simulation results, the proposed algorithms offer reduced steady-state misalignment in system-identification, channel-equalization, and acoustic-echo-cancelation applications. A mean-square-error analysis of the proposed APL algorithms is also carried out and its accuracy is verified by using simulation results in a system-identification application.