Visible to the public Biblio

Filters: Keyword is spyware  [Clear All Filters]
2023-09-20
Alsmadi, Izzat, Al-Ahmad, Bilal, Alsmadi, Mohammad.  2022.  Malware analysis and multi-label category detection issues: Ensemble-based approaches. 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :164—169.
Detection of malware and security attacks is a complex process that can vary in its details and analysis activities. As part of the detection process, malware scanners try to categorize a malware once it is detected under one of the known malware categories (e.g. worms, spywares, viruses, etc.). However, many studies and researches indicate problems with scanners categorizing or identifying a particular malware under more than one malware category. This paper, and several others, show that machine learning can be used for malware detection especially with ensemble base prediction methods. In this paper, we evaluated several custom-built ensemble models. We focused on multi-label malware classification as individual or classical classifiers showed low accuracy in such territory.This paper showed that recent machine models such as ensemble and deep learning can be used for malware detection with better performance in comparison with classical models. This is very critical in such a dynamic and yet important detection systems where challenges such as the detection of unknown or zero-day malware will continue to exist and evolve.
2022-08-26
Pande, Prateek, Mallaiah, Kurra, Gandhi, Rishi Kumar, Medatiya, Amit Kumar, Srinivasachary, S.  2021.  Fine Grained Confinement of Untrusted Third-Party Applications in Android. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :372—376.
Third party mobile applications are dominating the business strategies of organisations and have become an integral part of personal life of individuals. These applications are used for financial transactions, sharing of sensitive data etc. The recent breaches in Android clearly indicate that use of third party applications have become a serious security threat. By design, Android framework keeps all these applications in untrusted domain. Due to this a common policy of resource control exists for all such applications. Further, user discretion in granting permissions to specific applications is not effective because users are not always aware of deep functionalities, mala fide intentions (in case of spywares) and bugs/flaws in these third-party applications. In this regard, we propose a security scheme to mitigate unauthorised access of resources by third party applications. Our proposed scheme is based on SEAndroid policies and achieves fine grained confinement with respect to access control for the third party applications. To the best of our knowledge, the proposed scheme is unique and first of its kind. The proposed scheme is integrated with Android Oreo 8.1.0 for performance and security analysis. It is compatible with any Android device with AOSP support.
2022-06-06
Elmalaki, Salma, Ho, Bo-Jhang, Alzantot, Moustafa, Shoukry, Yasser, Srivastava, Mani.  2019.  SpyCon: Adaptation Based Spyware in Human-in-the-Loop IoT. 2019 IEEE Security and Privacy Workshops (SPW). :163–168.
Personalized IoT adapt their behavior based on contextual information, such as user behavior and location. Unfortunately, the fact that personalized IoT adapt to user context opens a side-channel that leaks private information about the user. To that end, we start by studying the extent to which a malicious eavesdropper can monitor the actions taken by an IoT system and extract user's private information. In particular, we show two concrete instantiations (in the context of mobile phones and smart homes) of a new category of spyware which we refer to as Context-Aware Adaptation Based Spyware (SpyCon). Experimental evaluations show that the developed SpyCon can predict users' daily behavior with an accuracy of 90.3%. Being a new spyware with no known prior signature or behavior, traditional spyware detection that is based on code signature or system behavior are not adequate to detect SpyCon. We discuss possible detection and mitigation mechanisms that can hinder the effect of SpyCon.
2022-05-19
Sharma, Anurag, Mohanty, Suman, Islam, Md. Ruhul.  2021.  An Experimental Analysis on Malware Detection in Executable Files using Machine Learning. 2021 8th International Conference on Smart Computing and Communications (ICSCC). :178–182.
In the recent time due to advancement of technology, Malware and its clan have continued to advance and become more diverse. Malware otherwise Malicious Software consists of Virus, Trojan horse, Adware, Spyware etc. This said software leads to extrusion of data (Spyware), continuously flow of Ads (Adware), modifying or damaging the system files (Virus), or access of personal information (Trojan horse). Some of the major factors driving the growth of these attacks are due to poorly secured devices and the ease of availability of tools in the Internet with which anyone can attack any system. The attackers or the developers of Malware usually lean towards blending of malware into the executable file, which makes it hard to detect the presence of malware in executable files. In this paper we have done experimental study on various algorithms of Machine Learning for detecting the presence of Malware in executable files. After testing Naïve Bayes, KNN and SVM, we found out that SVM was the most suited algorithm and had the accuracy of 94%. We then created a web application where the user could upload executable file and test the authenticity of the said executable file if it is a Malware file or a benign file.
2021-02-10
Mishra, P., Gupta, C..  2020.  Cookies in a Cross-site scripting: Type, Utilization, Detection, Protection and Remediation. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1056—1059.
In accordance to the annual report by the Cisco 2018, web applications are exposed to several security vulnerabilities that are exploited by hackers in various ways. It is becoming more and more frequent, specific and sophisticated. Of all the vulnerabilities, more than 40% of attempts are performed via cross-site scripting (XSS). A number of methods have been postulated to examine such vulnerabilities. Therefore, this paper attempted to address an overview of one such vulnerability: the cookies in the XSS. The objective is to present an overview of the cookies, it's type, vulnerability, policies, discovering, protecting and their mitigation via different tools/methods and via cryptography, artificial intelligence techniques etc. While some future issues, directions, challenges and future research challenges were also being discussed.
2020-09-04
Wajahat, Ahsan, Imran, Azhar, Latif, Jahanzaib, Nazir, Ahsan, Bilal, Anas.  2019.  A Novel Approach of Unprivileged Keylogger Detection. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1—6.
Nowadays, computers are used everywhere to carry out daily routine tasks. The input devices i.e. keyboard or mouse are used to feed input to computers. The surveillance of input devices is much important as monitoring the users logging activity. A keylogger also referred as a keystroke logger, is a software or hardware device which monitors every keystroke typed by a user. Keylogger runs in the background that user cannot identify its presence. It can be used as monitoring software for parents to keep an eye on children activity on computers and for the owner to monitor their employees. A keylogger (which can be either spyware or software) is a kind of surveillance software that has the ability to store every keystroke in a log file. It is very dangerous for those systems which use their system for daily transaction purpose i.e. Online Banking Systems. A keylogger is a tool, made to save all the keystroke generated through the machine which sanctions hackers to steal sensitive information without user's intention. Privileged also relies on the access for both implementation and placement by Kernel keylogger, the entire message transmitted from the keyboard drivers, while the programmer simply relies on kernel level facilities that interrupt. This certainly needs a large power and expertise for real and error-free execution. However, it has been observed that 90% of the current keyloggers are running in userspace so they do not need any permission for execution. Our aim is focused on detecting userspace keylogger. Our intention is to forbid userspace keylogger from stealing confidential data and information. For this purpose, we use a strategy which is clearly based on detection manner techniques for userspace keyloggers, an essential category of malware packages. We intend to achieve this goal by matching I/O of all processes with some simulated activity of the user, and we assert detection in case the two are highly correlated. The rationale behind this is that the more powerful stream of keystrokes, the more I/O operations are required by the keylogger to log the keystrokes into the file.
2017-09-05
Thakar, Bhavik, Parekh, Chandresh.  2016.  Advance Persistent Threat: Botnet. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :143:1–143:6.

Growth of internet era and corporate sector dealings communication online has introduced crucial security challenges in cyber space. Statistics of recent large scale attacks defined new class of threat to online world, advanced persistent threat (APT) able to impact national security and economic stability of any country. From all APTs, botnet is one of the well-articulated and stealthy attacks to perform cybercrime. Botnet owners and their criminal organizations are continuously developing innovative ways to infect new targets into their networks and exploit them. The concept of botnet refers collection of compromised computers (bots) infected by automated software robots, that interact to accomplish some distributed task which run without human intervention for illegal purposes. They are mostly malicious in nature and allow cyber criminals to control the infected machines remotely without the victim's knowledge. They use various techniques, communication protocols and topologies in different stages of their lifecycle; also specifically they can upgrade their methods at any time. Botnet is global in nature and their target is to steal or destroy valuable information from organizations as well as individuals. In this paper we present real world botnet (APTs) survey.

2017-02-14
A. K. M. A., J. C. D..  2015.  "Execution Time Measurement of Virtual Machine Volatile Artifacts Analyzers". 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS). :314-319.

Due to a rapid revaluation in a virtualization environment, Virtual Machines (VMs) are target point for an attacker to gain privileged access of the virtual infrastructure. The Advanced Persistent Threats (APTs) such as malware, rootkit, spyware, etc. are more potent to bypass the existing defense mechanisms designed for VM. To address this issue, Virtual Machine Introspection (VMI) emerged as a promising approach that monitors run state of the VM externally from hypervisor. However, limitation of VMI lies with semantic gap. An open source tool called LibVMI address the semantic gap. Memory Forensic Analysis (MFA) tool such as Volatility can also be used to address the semantic gap. But, it needs to capture a memory dump (RAM) as input. Memory dump acquires time and its analysis time is highly crucial if Intrusion Detection System IDS (IDS) depends on the data supplied by FAM or VMI tool. In this work, live virtual machine RAM dump acquire time of LibVMI is measured. In addition, captured memory dump analysis time consumed by Volatility is measured and compared with other memory analyzer such as Rekall. It is observed through experimental results that, Rekall takes more execution time as compared to Volatility for most of the plugins. Further, Volatility and Rekall are compared with LibVMI. It is noticed that examining the volatile data through LibVMI is faster as it eliminates memory dump acquire time.