Biblio
Live migration is the process used in virtualization environment of datacenters in order to take the benefit of zero downtime during system maintenance. But during migrating live virtual machines along with system files and storage data, network traffic gets increases across network bandwidth and delays in migration time. There is need to reduce the migration time in order to maintain the system performance by analyzing and optimizing the storage overheads which mainly creates due to unnecessary duplicated data transferred during live migration. So there is need of such storage device which will keep the duplicated data residing in both the source as well as target physical host i.e. NAS. The proposed hash map based algorithm maps all I/O operations in order to track the duplicated data by assigning hash value to both NAS and RAM data. Only the unique data then will be sent data to the target host without affecting service level agreement (SLA), without affecting VM migration time, application downtime, SLA violations, VM pre-migration and downtime post migration overheads during pre and post migration of virtual machines.
Due to a rapid revaluation in a virtualization environment, Virtual Machines (VMs) are target point for an attacker to gain privileged access of the virtual infrastructure. The Advanced Persistent Threats (APTs) such as malware, rootkit, spyware, etc. are more potent to bypass the existing defense mechanisms designed for VM. To address this issue, Virtual Machine Introspection (VMI) emerged as a promising approach that monitors run state of the VM externally from hypervisor. However, limitation of VMI lies with semantic gap. An open source tool called LibVMI address the semantic gap. Memory Forensic Analysis (MFA) tool such as Volatility can also be used to address the semantic gap. But, it needs to capture a memory dump (RAM) as input. Memory dump acquires time and its analysis time is highly crucial if Intrusion Detection System IDS (IDS) depends on the data supplied by FAM or VMI tool. In this work, live virtual machine RAM dump acquire time of LibVMI is measured. In addition, captured memory dump analysis time consumed by Volatility is measured and compared with other memory analyzer such as Rekall. It is observed through experimental results that, Rekall takes more execution time as compared to Volatility for most of the plugins. Further, Volatility and Rekall are compared with LibVMI. It is noticed that examining the volatile data through LibVMI is faster as it eliminates memory dump acquire time.