Visible to the public Biblio

Filters: Keyword is packet inspection  [Clear All Filters]
2020-08-17
Paudel, Ramesh, Muncy, Timothy, Eberle, William.  2019.  Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data). :5249–5258.
The use of the Internet of Things (IoT) devices has surged in recent years. However, due to the lack of substantial security, IoT devices are vulnerable to cyber-attacks like Denial-of-Service (DoS) attacks. Most of the current security solutions are either computationally expensive or unscalable as they require known attack signatures or full packet inspection. In this paper, we introduce a novel Graph-based Outlier Detection in Internet of Things (GODIT) approach that (i) represents smart home IoT traffic as a real-time graph stream, (ii) efficiently processes graph data, and (iii) detects DoS attack in real-time. The experimental results on real-world data collected from IoT-equipped smart home show that GODIT is more effective than the traditional machine learning approaches, and is able to outperform current graph-stream anomaly detection approaches.
2020-04-17
Brugman, Jonathon, Khan, Mohammed, Kasera, Sneha, Parvania, Masood.  2019.  Cloud Based Intrusion Detection and Prevention System for Industrial Control Systems Using Software Defined Networking. 2019 Resilience Week (RWS). 1:98—104.

Industrial control systems (ICS) are becoming more integral to modern life as they are being integrated into critical infrastructure. These systems typically lack application layer encryption and the placement of common network intrusion services have large blind spots. We propose the novel architecture, Cloud Based Intrusion Detection and Prevention System (CB-IDPS), to detect and prevent threats in ICS networks by using software defined networking (SDN) to route traffic to the cloud for inspection using network function virtualization (NFV) and service function chaining. CB-IDPS uses Amazon Web Services to create a virtual private cloud for packet inspection. The CB-IDPS framework is designed with considerations to the ICS delay constraints, dynamic traffic routing, scalability, resilience, and visibility. CB-IDPS is presented in the context of a micro grid energy management system as the test case to prove that the latency of CB-IDPS is within acceptable delay thresholds. The implementation of CB-IDPS uses the OpenDaylight software for the SDN controller and commonly used network security tools such as Zeek and Snort. To our knowledge, this is the first attempt at using NFV in an ICS context for network security.

2017-02-14
B. C. M. Cappers, J. J. van Wijk.  2015.  "SNAPS: Semantic network traffic analysis through projection and selection". 2015 IEEE Symposium on Visualization for Cyber Security (VizSec). :1-8.

Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced Persistent Threats in progress.