Visible to the public Biblio

Filters: Keyword is streaming data  [Clear All Filters]
2020-09-21
Wang, Zan-Jun, Lin, Ching-Hua Vivian, Yuan, Yang-Hao, Huang, Ching-Chun Jim.  2019.  Decentralized Data Marketplace to Enable Trusted Machine Economy. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE). :246–250.
Transacting IoT data must be different in many from traditional approaches in order to build much-needed trust in data marketplaces, trust that will be the key to their sustainability. Data generated internally to an organization is usually not enough to remain competitive, enhance customer experiences, or improve strategic decision-making. In this paper, we propose a decentralized and trustless architecture through the posting of trade records while including the transaction process on distributed ledgers. This approach can efficiently enhance the degree of transparency, as all contract-oriented interactions will be written on-chain. Storage via an end-to-end encrypted message channel allows transmitting and accessing trusted data streams over distributed ledgers regardless of the size or cost of the device, while simultaneously making a verifiable Auth-compliant request to the platform. Furthermore, the platform will complete matching, trading and refunding processes with-out human intervention, and it also protects the rights of data providers and consumers through trading policies which apply revolutionary game theory to the machine economy.
2017-08-02
Moran, Sean, McCreadie, Richard, Macdonald, Craig, Ounis, Iadh.  2016.  Enhancing First Story Detection Using Word Embeddings. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. :821–824.

In this paper we show how word embeddings can be used to increase the effectiveness of a state-of-the art Locality Sensitive Hashing (LSH) based first story detection (FSD) system over a standard tweet corpus. Vocabulary mismatch, in which related tweets use different words, is a serious hindrance to the effectiveness of a modern FSD system. In this case, a tweet could be flagged as a first story even if a related tweet, which uses different but synonymous words, was already returned as a first story. In this work, we propose a novel approach to mitigate this problem of lexical variation, based on tweet expansion. In particular, we propose to expand tweets with semantically related paraphrases identified via automatically mined word embeddings over a background tweet corpus. Through experimentation on a large data stream comprised of 50 million tweets, we show that FSD effectiveness can be improved by 9.5% over a state-of-the-art FSD system.

2017-02-14
B. C. M. Cappers, J. J. van Wijk.  2015.  "SNAPS: Semantic network traffic analysis through projection and selection". 2015 IEEE Symposium on Visualization for Cyber Security (VizSec). :1-8.

Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced Persistent Threats in progress.