Visible to the public Biblio

Filters: Keyword is query languages  [Clear All Filters]
2020-05-22
Kang, Hyunjoong, Hong, Sanghyun, Lee, Kookjin, Park, Noseong, Kwon, Soonhyun.  2018.  On Integrating Knowledge Graph Embedding into SPARQL Query Processing. 2018 IEEE International Conference on Web Services (ICWS). :371—374.
SPARQL is a standard query language for knowledge graphs (KGs). However, it is hard to find correct answer if KGs are incomplete or incorrect. Knowledge graph embedding (KGE) enables answering queries on such KGs by inferring unknown knowledge and removing incorrect knowledge. Hence, our long-term goal in this line of research is to propose a new framework that integrates KGE and SPARQL, which opens various research problems to be addressed. In this paper, we solve one of the most critical problems, that is, optimizing the performance of nearest neighbor (NN) search. In our evaluations, we demonstrate that the search time of state-of-the-art NN search algorithms is improved by 40% without sacrificing answer accuracy.
2019-02-13
Gevargizian, J., Kulkarni, P..  2018.  MSRR: Measurement Framework For Remote Attestation. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :748–753.
Measurers are critical to a remote attestation (RA) system to verify the integrity of a remote untrusted host. Run-time measurers in a dynamic RA system sample the dynamic program state of the host to form evidence in order to establish trust by a remote system (appraiser). However, existing run-time measurers are tightly integrated with specific software. Such measurers need to be generated anew for each software, which is a manual process that is both challenging and tedious. In this paper we present a novel approach to decouple application-specific measurement policies from the measurers tasked with performing the actual run-time measurement. We describe MSRR (MeaSeReR), a novel general-purpose measurement framework that is agnostic of the target application. We show how measurement policies written per application can use MSRR, eliminating much time and effort spent on reproducing core measurement functionality. We describe MSRR's robust querying language, which allows the appraiser to accurately specify the what, when, and how to measure. We evaluate MSRR's overhead and demonstrate its functionality.
2017-03-07
Kim, J., Moon, I., Lee, K., Suh, S. C., Kim, I..  2015.  Scalable Security Event Aggregation for Situation Analysis. 2015 IEEE First International Conference on Big Data Computing Service and Applications. :14–23.

Cyber-attacks have been evolved in a way to be more sophisticated by employing combinations of attack methodologies with greater impacts. For instance, Advanced Persistent Threats (APTs) employ a set of stealthy hacking processes running over a long period of time, making it much hard to detect. With this trend, the importance of big-data security analytics has taken greater attention since identifying such latest attacks requires large-scale data processing and analysis. In this paper, we present SEAS-MR (Security Event Aggregation System over MapReduce) that facilitates scalable security event aggregation for comprehensive situation analysis. The introduced system provides the following three core functions: (i) periodic aggregation, (ii) on-demand aggregation, and (iii) query support for effective analysis. We describe our design and implementation of the system over MapReduce and high-level query languages, and report our experimental results collected through extensive settings on a Hadoop cluster for performance evaluation and design impacts.

2017-02-14
J. Kim, I. Moon, K. Lee, S. C. Suh, I. Kim.  2015.  "Scalable Security Event Aggregation for Situation Analysis". 2015 IEEE First International Conference on Big Data Computing Service and Applications. :14-23.

Cyber-attacks have been evolved in a way to be more sophisticated by employing combinations of attack methodologies with greater impacts. For instance, Advanced Persistent Threats (APTs) employ a set of stealthy hacking processes running over a long period of time, making it much hard to detect. With this trend, the importance of big-data security analytics has taken greater attention since identifying such latest attacks requires large-scale data processing and analysis. In this paper, we present SEAS-MR (Security Event Aggregation System over MapReduce) that facilitates scalable security event aggregation for comprehensive situation analysis. The introduced system provides the following three core functions: (i) periodic aggregation, (ii) on-demand aggregation, and (iii) query support for effective analysis. We describe our design and implementation of the system over MapReduce and high-level query languages, and report our experimental results collected through extensive settings on a Hadoop cluster for performance evaluation and design impacts.