Visible to the public Biblio

Filters: Keyword is electric grid  [Clear All Filters]
2020-11-20
Chin, J., Zufferey, T., Shyti, E., Hug, G..  2019.  Load Forecasting of Privacy-Aware Consumers. 2019 IEEE Milan PowerTech. :1—6.

The roll-out of smart meters (SMs) in the electric grid has enabled data-driven grid management and planning techniques. SM data can be used together with short-term load forecasts (STLFs) to overcome polling frequency constraints for better grid management. However, the use of SMs that report consumption data at high spatial and temporal resolutions entails consumer privacy risks, motivating work in protecting consumer privacy. The impact of privacy protection schemes on STLF accuracy is not well studied, especially for smaller aggregations of consumers, whose load profiles are subject to more volatility and are, thus, harder to predict. In this paper, we analyse the impact of two user demand shaping privacy protection schemes, model-distribution predictive control (MDPC) and load-levelling, on STLF accuracy. Support vector regression is used to predict the load profiles at different consumer aggregation levels. Results indicate that, while the MDPC algorithm marginally affects forecast accuracy for smaller consumer aggregations, this diminishes at higher aggregation levels. More importantly, the load-levelling scheme significantly improves STLF accuracy as it smoothens out the grid visible consumer load profile.

2020-01-13
van Kerkhoven, Jason, Charlebois, Nathaniel, Robertson, Alex, Gibson, Brydon, Ahmed, Arslan, Bouida, Zied, Ibnkahla, Mohamed.  2019.  IPv6-Based Smart Grid Communication over 6LoWPAN. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Smart Grid is a major element of the Smart City concept that enables two-way communication of energy data between electric utilities and their consumers. These communication technologies are going through sharp modernization to meet future demand growth and to achieve reliability, security, and efficiency of the electric grid. In this paper, we implement an IPv6 based two-way communication system between the transformer agent (TA), installed at local electric transformer and various customer agents (CAs), connected to customer's smart meter. Various homes share their energy usage with the TA which in turn sends the utility's recommendations to the CAs. Raspberry Pi is used as hardware for all the CAs and the TA. We implement a self-healing mesh network between all nodes using OpenLab IEEE 802.15.4 chips and Routing Protocol for Low-Power and Lossy Networks (RPL), and the data is secured by RSA/AES keys. Several tests have been conducted in real environments, inside and outside of Carleton University, to test the performance of this communication network in various obstacle settings. In this paper, we highlight the details behind the implementation of this IPv6-based smart grid communication system, the related challenges, and the proposed solutions.
2019-10-02
Chao, H., Ringlee, R. J..  2018.  Analytical Challenges in Reliability and Resiliency Modeling. 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1–5.
A significant number of the generation, transmission and distribution facilities in the North America were designed and configured for serving electric loads and economic activities under certain reliability and resiliency requirements over 30 years ago. With the changing generation mix, the electric grid is tasked to deliver electricity made by fuel uncertain and energy limited resources. How adequate are the existing facilities to meet the industry expectations on reliability? What level of grid resiliency should be designed and built to sustain reliable electric services given the increasing exposure to frequent and lasting severe weather conditions? There is a need to review the modeling assumptions, operating and maintenance records before we can answer these questions.
2017-02-14
R. Leszczyna, M. Łosiński, R. Małkowski.  2015.  "Security information sharing for the polish power system". 2015 Modern Electric Power Systems (MEPS). :1-6.

The Polish Power System is becoming increasingly more dependent on Information and Communication Technologies which results in its exposure to cyberattacks, including the evolved and highly sophisticated threats such as Advanced Persistent Threats or Distributed Denial of Service attacks. The most exposed components are SCADA systems in substations and Distributed Control Systems in power plants. When addressing this situation the usual cyber security technologies are prerequisite, but not sufficient. With the rapidly evolving cyber threat landscape the use of partnerships and information sharing has become critical. However due to several anonymity concerns the relevant stakeholders may become reluctant to exchange sensitive information about security incidents. In the paper a multi-agent architecture is presented for the Polish Power System which addresses the anonymity concerns.