Biblio
Indoor localization of unknown acoustic events with MEMS microphone arrays have a huge potential in applications like home assisted living and surveillance. This article presents an Angle of Arrival (AoA) fingerprinting method for use in Wireless Acoustic Sensor Networks (WASNs) with low-profile microphone arrays. In a first research phase, acoustic measurements are performed in an anechoic room to evaluate two computationally efficient time domain delay-based AoA algorithms: one based on dot product calculations and another based on dot products with a PHAse Transform (PHAT). The evaluation of the algorithms is conducted with two sound events: white noise and a female voice. The algorithms are able to calculate the AoA with Root Mean Square Errors (RMSEs) of 3.5° for white noise and 9.8° to 16° for female vocal sounds. In the second research phase, an AoA fingerprinting algorithm is developed for acoustic event localization. The proposed solution is experimentally verified in a room of 4.25 m by 9.20 m with 4 acoustic sensor nodes. Acoustic fingerprints of white noise, recorded along a predefined grid in the room, are used to localize white noise and vocal sounds. The localization errors are evaluated using one node at a time, resulting in mean localization errors between 0.65 m and 0.98 m for white noise and between 1.18 m and 1.52 m for vocal sounds.
Over the past decade, we have witnessed a huge upsurge in social networking which continues to touch and transform our lives till present day. Social networks help us to communicate amongst our acquaintances and friends with whom we share similar interests on a common platform. Globally, there are more than 200 million visually impaired people. Visual impairment has many issues associated with it, but the one that stands out is the lack of accessibility to content for entertainment and socializing safely. This paper deals with the development of a keyboard less social networking website for visually impaired. The term keyboard less signifies minimum use of keyboard and allows the user to explore the contents of the website using assistive technologies like screen readers and speech to text (STT) conversion technologies which in turn provides a user friendly experience for the target audience. As soon as the user with minimal computer proficiency opens this website, with the help of screen reader, he/she identifies the username and password fields. The user speaks out his username and with the help of STT conversion (using Web Speech API), the username is entered. Then the control moves over to the password field and similarly, the password of the user is obtained and matched with the one saved in the website database. The concept of acoustic fingerprinting has been implemented for successfully validating the passwords of registered users and foiling intentions of malicious attackers. On successful match of the passwords, the user is able to enjoy the services of the website without any further hassle. Once the access obstacles associated to deal with social networking sites are successfully resolved and proper technologies are put to place, social networking sites can be a rewarding, fulfilling, and enjoyable experience for the visually impaired people.