Visible to the public Biblio

Filters: Keyword is interdomain routing  [Clear All Filters]
2018-03-19
Chiesa, Marco, Demmler, Daniel, Canini, Marco, Schapira, Michael, Schneider, Thomas.  2017.  SIXPACK: Securing Internet eXchange Points Against Curious onlooKers. Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies. :120–133.

Internet eXchange Points (IXPs) play an ever-growing role in Internet inter-connection. To facilitate the exchange of routes amongst their members, IXPs provide Route Server (RS) services to dispatch the routes according to each member's peering policies. Nowadays, to make use of RSes, these policies must be disclosed to the IXP. This poses fundamental questions regarding the privacy guarantees of route-computation on confidential business information. Indeed, as evidenced by interaction with IXP administrators and a survey of network operators, this state of affairs raises privacy concerns among network administrators and even deters some networks from subscribing to RS services. We design Sixpack1, an RS service that leverages Secure Multi-Party Computation (SMPC) to keep peering policies confidential, while extending, the functionalities of today's RSes. As SMPC is notoriously heavy in terms of communication and computation, our design and implementation of Sixpack aims at moving computation outside of the SMPC without compromising the privacy guarantees. We assess the effectiveness and scalability of our system by evaluating a prototype implementation using traces of data from one of the largest IXPs in the world. Our evaluation results indicate that Sixpack can scale to support privacy-preserving route-computation, even at IXPs with many hundreds of member networks.

2017-02-21
J. Pan, R. Jain, S. Paul.  2015.  "Enhanced Evaluation of the Interdomain Routing System for Balanced Routing Scalability and New Internet Architecture Deployments". IEEE Systems Journal. 9:892-903.

Internet is facing many challenges that cannot be solved easily through ad hoc patches. To address these challenges, many research programs and projects have been initiated and many solutions are being proposed. However, before we have a new architecture that can motivate Internet service providers (ISPs) to deploy and evolve, we need to address two issues: 1) know the current status better by appropriately evaluating the existing Internet; and 2) find how various incentives and strategies will affect the deployment of the new architecture. For the first issue, we define a series of quantitative metrics that can potentially unify results from several measurement projects using different approaches and can be an intrinsic part of future Internet architecture (FIA) for monitoring and evaluation. Using these metrics, we systematically evaluate the current interdomain routing system and reveal many “autonomous-system-level” observations and key lessons for new Internet architectures. Particularly, the evaluation results reveal the imbalance underlying the interdomain routing system and how the deployment of FIAs can benefit from these findings. With these findings, for the second issue, appropriate deployment strategies of the future architecture changes can be formed with balanced incentives for both customers and ISPs. The results can be used to shape the short- and long-term goals for new architectures that are simple evolutions of the current Internet (so-called dirty-slate architectures) and to some extent to clean-slate architectures.