Visible to the public Biblio

Filters: Keyword is massive MIMO  [Clear All Filters]
2023-02-03
Sekhar, P. Chandra, Murthy, T. S. N..  2022.  Physical Layer Security using SMO. 2022 International Conference on Computing, Communication and Power Technology (IC3P). :98–102.
Physical Layer Security (PLS) is used to accomplish perfect secure communication between intended network nodes, while the eavesdropper gets zero information. In this paper, a smart antenna technology i.e., Massive multiple-input-multiple-output (mMIMO) and Non-Orthogonal Multiple Access (NOMA) technology is being used to enhance the secrecy performance of a 5G communication network. Small scale Rayleigh fading channels, as well as large scale pathway loss, have to be taken into consideration. An eavesdropper with multiple antennas, an amplify-and-forward (AF) relay with multi antenna has been proposed. Spider Monkey Algorithm (SMO) is used in adding Artificial Noise (AN) for refining secrecy rate. The findings revealed that the suggested technique improves the security and the quality of Wireless communication.
2022-07-01
Manoj, B. R., Sadeghi, Meysam, Larsson, Erik G..  2021.  Adversarial Attacks on Deep Learning Based Power Allocation in a Massive MIMO Network. ICC 2021 - IEEE International Conference on Communications. :1–6.
Deep learning (DL) is becoming popular as a new tool for many applications in wireless communication systems. However, for many classification tasks (e.g., modulation classification) it has been shown that DL-based wireless systems are susceptible to adversarial examples; adversarial examples are well-crafted malicious inputs to the neural network (NN) with the objective to cause erroneous outputs. In this paper, we extend this to regression problems and show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network. Specifically, we extend the fast gradient sign method (FGSM), momentum iterative FGSM, and projected gradient descent adversarial attacks in the context of power allocation in a maMIMO system. We benchmark the performance of these attacks and show that with a small perturbation in the input of the NN, the white-box attacks can result in infeasible solutions up to 86%. Furthermore, we investigate the performance of black-box attacks. All the evaluations conducted in this work are based on an open dataset and NN models, which are publicly available.
2019-02-08
Cao, R., Wong, T. F., Gao, H., Wang, D., Lu, Y..  2018.  Blind Channel Direction Separation Against Pilot Spoofing Attack in Massive MIMO System. 2018 26th European Signal Processing Conference (EUSIPCO). :2559-2563.

This paper considers a pilot spoofing attack scenario in a massive MIMO system. A malicious user tries to disturb the channel estimation process by sending interference symbols to the base-station (BS) via the uplink. Another legitimate user counters by sending random symbols. The BS does not possess any partial channel state information (CSI) and distribution of symbols sent by malicious user a priori. For such scenario, this paper aims to separate the channel directions from the legitimate and malicious users to the BS, respectively. A blind channel separation algorithm based on estimating the characteristic function of the distribution of the signal space vector is proposed. Simulation results show that the proposed algorithm provides good channel separation performance in a typical massive MIMO system.

2017-02-21
M. B. Amin, W. Zirwas, M. Haardt.  2015.  "Advanced channel prediction concepts for 5G radio systems". 2015 International Symposium on Wireless Communication Systems (ISWCS). :166-170.

Massive MIMO and tight cooperation between transmission nodes are expected to become an integral part of a future 5G radio system. As part of an overall interference mitigation scheme substantial gains in coverage, spectral as well as energy efficiency have been reported. One of the main limitations for massive MIMO and coordinated multi-point (CoMP) systems is the aging of the channel state information at the transmitter (CSIT), which can be overcome partly by state of the art channel prediction techniques. For a clean slate 5G radio system, we propose to integrate channel prediction from the scratch in a flexible manner to benefit from future improvements in this area. As any prediction is unreliable by nature, further improvements over the state of the art are needed for a convincing solution. In this paper, we explain how the basic ingredients of 5G like base stations with massive MIMO antenna arrays, and multiple UE antennas can help to stretch today's limits with an approximately 10 dB lower normalized mean square error (NMSE) of the predicted channel. In combination with the novel introduced concept of artificially mutually coupled antennas, adding super-directivity gains to virtual beamforming, robust and accurate prediction over 10 ms with an NMSE of -20 dB up to 15 km/h at 2.6 GHz RF frequency could be achieved. This result has been achieved for measured channels without massive MIMO, but a comparison with ray-traced channels for the same scenario is provided as well.