Biblio
A technical method regarding to the improvement of transmission capacity of an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a visible light emitting diode (LED) is proposed in this paper. An original OFDM signal, which is encoded by various multilevel digital modulations such as quadrature phase shift keying (QPSK), and quadrature amplitude modulation (QAM), is converted into a sparse one and then compressed using an adaptive sampling with inverse discrete cosine transform, while its error-free reconstruction is implemented using a L1-minimization based on a Bayesian compressive sensing (CS). In case of QPSK symbols, the transmission capacity of the optical wireless OFDM link was increased from 31.12 Mb/s to 51.87 Mb/s at the compression ratio of 40 %, while It was improved from 62.5 Mb/s to 78.13 Mb/s at the compression ratio of 20 % under the 16-QAM symbols in the error free wireless transmission (forward error correction limit: bit error rate of 10-3).
In this paper, a new approach based on Sub-sampled Inverse Fast Fourier Transform (SSIFFT) for efficiently acquiring compressive measurements is proposed, which is motivated by random filter based method and sub-sampled FFT. In our approach, to start with, we multiply the FFT of input signal and that of random-tap FIR filter in frequency domain and then utilize SSIFFT to obtain compressive measurements in the time domain. It requires less data storage and computation than the existing methods based on random filter. Moreover, it is suitable for both one-dimensional and two-dimensional signals. Experimental results show that the proposed approach is effective and efficient.