Biblio
In this study, it was aimed to recognize the emotional state from facial images using the deep learning method. In the study, which was approved by the ethics committee, a custom data set was created using videos taken from 20 male and 20 female participants while simulating 7 different facial expressions (happy, sad, surprised, angry, disgusted, scared, and neutral). Firstly, obtained videos were divided into image frames, and then face images were segmented using the Haar library from image frames. The size of the custom data set obtained after the image preprocessing is more than 25 thousand images. The proposed convolutional neural network (CNN) architecture which is mimics of LeNet architecture has been trained with this custom dataset. According to the proposed CNN architecture experiment results, the training loss was found as 0.0115, the training accuracy was found as 99.62%, the validation loss was 0.0109, and the validation accuracy was 99.71%.
The automatic face tracking and detection has been one of the fastest developing areas due to its wide range of application, security and surveillance application in particular. It has been one of the most interest subjects, which suppose but yet to be wholly explored in various research areas due to various distinctive factors: varying ethnic groups, sizes, orientations, poses, occlusions and lighting conditions. The focus of this paper is to propose an improve algorithm to speed up the face tracking and detection process with the simple and efficient proposed novel edge detector to reject the non-face-likes regions, hence reduce the false detection rate in an automatic face tracking and detection in still images with multiple faces for facial expression system. The correct rates of 95.9% on the Haar face detection and proposed novel edge detector, which is higher 6.1% than the primitive integration of Haar and canny edge detector.
In this paper, a general content adaptive image steganography detector in the spatial domain is proposed. We assemble conventional Haar and LBP features to construct local co-occurrence features, then the boosted classifiers are used to assemble the features as well as the final detector, and each weak classifier of the boosted classifiers corresponds to the co-occurrence feature of a local image region. Moreover, the classification ability and the generalization power of the candidate features are both evaluated for decision in the feature selection procedure of boosting training, which makes the final detector more accuracy. The experimental results on standard dataset show that the proposed framework can detect two primary content adaptive stego algorithms in the spatial domain with higher accuracy than the state-of-the-art steganalysis method.
In this paper, we propose to impose a multiscale contextual loss for image style transfer based on Convolutional Neural Networks (CNN). In the traditional optimization framework, a new stylized image is synthesized by constraining the high-level CNN features similar to a content image and the lower-level CNN features similar to a style image, which, however, appears to lost many details of the content image, presenting unpleasing and inconsistent distortions or artifacts. The proposed multiscale contextual loss, named Haar loss, is responsible for preserving the lost details by dint of matching the features derived from the content image and the synthesized image via wavelet transform. It endows the synthesized image with the characteristic to better retain the semantic information of the content image. More specifically, the unpleasant distortions can be effectively alleviated while the style can be well preserved. In the experiments, we show the visually more consistent and simultaneously well-stylized images generated by incorporating the multiscale contextual loss.
As increasingly more enterprises are deploying cloud file-sharing services, this adds a new channel for potential insider threats to company data and IPs. In this paper, we introduce a two-stage machine learning system to detect anomalies. In the first stage, we project the access logs of cloud file-sharing services onto relationship graphs and use three complementary graph-based unsupervised learning methods: OddBall, PageRank and Local Outlier Factor (LOF) to generate outlier indicators. In the second stage, we ensemble the outlier indicators and introduce the discrete wavelet transform (DWT) method, and propose a procedure to use wavelet coefficients with the Haar wavelet function to identify outliers for insider threat. The proposed system has been deployed in a real business environment, and demonstrated effectiveness by selected case studies.
This paper proposes a fast and robust procedure for sensing and reconstruction of sparse or compressible magnetic resonance images based on the compressive sampling theory. The algorithm starts with incoherent undersampling of the k-space data of the image using a random matrix. The undersampled data is sparsified using Haar transformation. The Haar transform coefficients of the k-space data are then reconstructed using the orthogonal matching Pursuit algorithm. The reconstructed coefficients are inverse transformed into k-space data and then into the image in spatial domain. Finally, a median filter is used to suppress the recovery noise artifacts. Experimental results show that the proposed procedure greatly reduces the image data acquisition time without significantly reducing the image quality. The results also show that the error in the reconstructed image is reduced by median filtering.