Visible to the public Biblio

Filters: Keyword is Bayesian compressive sensing  [Clear All Filters]
2017-09-15
Yang, Bo, He, Suining, Chan, S.-H. Gary.  2016.  Updating Wireless Signal Map with Bayesian Compressive Sensing. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :310–317.

In a wireless system, a signal map shows the signal strength at different locations termed reference points (RPs). As access points (APs) and their transmission power may change over time, keeping an updated signal map is important for applications such as Wi-Fi optimization and indoor localization. Traditionally, the signal map is obtained by a full site survey, which is time-consuming and costly. We address in this paper how to efficiently update a signal map given sparse samples randomly crowdsourced in the space (e.g., by signal monitors, explicit human input, or implicit user participation). We propose Compressive Signal Reconstruction (CSR), a novel learning system employing Bayesian compressive sensing (BCS) for online signal map update. CSR does not rely on any path loss model or line of sight, and is generic enough to serve as a plug-in of any wireless system. Besides signal map update, CSR also computes the estimation error of signals in terms of confidence interval. CSR models the signal correlation with a kernel function. Using it, CSR constructs a sensing matrix based on the newly sampled signals. The sensing matrix is then used to compute the signal change at all the RPs with any BCS algorithm. We have conducted extensive experiments on CSR in our university campus. Our results show that CSR outperforms other state-of-the-art algorithms by a wide margin (reducing signal error by about 30% and sampling points by 20%).

2017-02-21
Y. Y. Won, D. S. Seo, S. M. Yoon.  2015.  "Improvement of transmission capacity of visible light access link using Bayesian compressive sensing". 2015 21st Asia-Pacific Conference on Communications (APCC). :449-453.

A technical method regarding to the improvement of transmission capacity of an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a visible light emitting diode (LED) is proposed in this paper. An original OFDM signal, which is encoded by various multilevel digital modulations such as quadrature phase shift keying (QPSK), and quadrature amplitude modulation (QAM), is converted into a sparse one and then compressed using an adaptive sampling with inverse discrete cosine transform, while its error-free reconstruction is implemented using a L1-minimization based on a Bayesian compressive sensing (CS). In case of QPSK symbols, the transmission capacity of the optical wireless OFDM link was increased from 31.12 Mb/s to 51.87 Mb/s at the compression ratio of 40 %, while It was improved from 62.5 Mb/s to 78.13 Mb/s at the compression ratio of 20 % under the 16-QAM symbols in the error free wireless transmission (forward error correction limit: bit error rate of 10-3).