Biblio
The paper proposes a novel technique of EEG induced Brain-Computer Interface system for user authentication of personal devices. The scheme enables a human user to lock and unlock any personal device using his/her mind generated password. A two stage security verification is employed in the scheme. In the first stage, a 3 × 3 spatial matrix of flickering circles will appear on the screen of which, rows are blinked randomly and user has to mentally select a row which contains his desired circle.P300 is released when the desired row is blinked. Successful selection of row is followed by the selection of a flickering circle in the desired row. Gazing at a particular flickering circle generates SSVEP brain pattern which is decoded to trace the mentally selected circle. User is able to store mentally uttered number in the selected circle, later the number with it's spatial position will serve as the password for the unlocking phase. Here, the user is equipped with a headphone where numbers starting from zero to nine are spelled randomly. Spelled number matching with the mentally uttered number generates auditory P300 in the subject's brain. The particular choice of mentally uttered number is detected by successful detection of auditory P300. A novel weight update algorithm of Recurrent Neural Network (RNN), based on Extended-Kalman Filter and Particle Filter is used here for classifying the brain pattern. The proposed classifier achieves the best classification accuracy of 95.6%, 86.5% and 83.5% for SSVEP, visual P300 and auditory P300 respectively.
Strecth Processing (SP) is a radar signal processing technique that provides high-range resolution with processing large bandwidth signals with lower rate Analog to Digital Converter(ADC)s. The range resolution of the large bandwidth signal is obtained through looking into a limited range window and low rate ADC samples. The target space in the observed range window is sparse and Compressive sensing(CS) is an important tool to further decrease the number of measurements and sparsely reconstruct the target space for sparse scenes with a known basis which is the Fourier basis in the general application of SP. Although classical CS techniques might be directly applied to SP, due to off-grid targets reconstruction performance degrades. In this paper, applicability of compressive sensing framework and its sparse signal recovery techniques to stretch processing is studied considering off-grid cases. For sparsity based robust SP, Perturbed Parameter Orthogonal Matching Pursuit(PPOMP) algorithm is proposed. PPOMP is an iterative technique that estimates off-grid target parameters through a gradient descent. To compute the error between actual and reconstructed parameters, Earth Movers Distance(EMD) is used. Performance of proposed algorithm are compared with classical CS and SP techniques.