Visible to the public Biblio

Filters: Keyword is EMD  [Clear All Filters]
2022-04-22
Xu, Chengtao, He, Fengyu, Chen, Bowen, Jiang, Yushan, Song, Houbing.  2021.  Adaptive RF Fingerprint Decomposition in Micro UAV Detection based on Machine Learning. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :7968—7972.
Radio frequency (RF) signal classification has significantly been used for detecting and identifying the features of unknown unmanned aerial vehicles (UAVs). This paper proposes a method using empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) on extracting the communication channel characteristics of intruding UAVs. The decomposed intrinsic mode functions (IMFs) except noise components are selected for RF signal pattern recognition based on machine learning (ML). The classification results show that the denoising effects introduced by EMD and EEMD could both fit in improving the detection accuracy with different features of RF communication channel, especially on identifying time-varying RF signal sources.
2021-12-20
Huang, Weiqing, Feng, Zhaowen, Xu, Yanyun, Zhang, Ning.  2021.  A Novel Method for Malicious Implanted Computer Video Cable Detection via Electromagnetic Features. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Electromagnetic (EM) radiation is an inherent phenomenon in the operation of electronic information equipment. The side-channel attack, malicious hardware and software implantation attack by using the EM radiation are implemented to steal information. This form of attacks can be used in air-gap information equipment, which bring great danger for information security. The malicious implantation hidden in circuits are difficult to detect. How to detect the implantation is a challenging problem. In this paper, a malicious hardware implantation is analyzed. A method that leverages EM signals for Trojan-embedded computer video cable detection is proposed. The method neither needs activating the Trojan nor requires near-field probe approaching at close. It utilizes recognizable patterns in the spectrum of EM to predict potential risks. This paper focuses on the extraction of feature vectors via the empirical mode decomposition (EMD) algorithm. Intrinsic mode functions (IMFs) are analyzed and selected to be eigenvectors. Using a common classification technique, we can achieve both effective and reliable detection results.
2021-03-09
Hossain, T., rakshit, A., Konar, A..  2020.  Brain-Computer Interface based User Authentication System for Personal Device Security. 2020 International Conference on Computer, Electrical Communication Engineering (ICCECE). :1—6.

The paper proposes a novel technique of EEG induced Brain-Computer Interface system for user authentication of personal devices. The scheme enables a human user to lock and unlock any personal device using his/her mind generated password. A two stage security verification is employed in the scheme. In the first stage, a 3 × 3 spatial matrix of flickering circles will appear on the screen of which, rows are blinked randomly and user has to mentally select a row which contains his desired circle.P300 is released when the desired row is blinked. Successful selection of row is followed by the selection of a flickering circle in the desired row. Gazing at a particular flickering circle generates SSVEP brain pattern which is decoded to trace the mentally selected circle. User is able to store mentally uttered number in the selected circle, later the number with it's spatial position will serve as the password for the unlocking phase. Here, the user is equipped with a headphone where numbers starting from zero to nine are spelled randomly. Spelled number matching with the mentally uttered number generates auditory P300 in the subject's brain. The particular choice of mentally uttered number is detected by successful detection of auditory P300. A novel weight update algorithm of Recurrent Neural Network (RNN), based on Extended-Kalman Filter and Particle Filter is used here for classifying the brain pattern. The proposed classifier achieves the best classification accuracy of 95.6%, 86.5% and 83.5% for SSVEP, visual P300 and auditory P300 respectively.

2017-02-21
I. Ilhan, A. C. Gurbuz, O. Arikan.  2015.  "Sparsity based robust Stretch Processing". 2015 IEEE International Conference on Digital Signal Processing (DSP). :95-99.

Strecth Processing (SP) is a radar signal processing technique that provides high-range resolution with processing large bandwidth signals with lower rate Analog to Digital Converter(ADC)s. The range resolution of the large bandwidth signal is obtained through looking into a limited range window and low rate ADC samples. The target space in the observed range window is sparse and Compressive sensing(CS) is an important tool to further decrease the number of measurements and sparsely reconstruct the target space for sparse scenes with a known basis which is the Fourier basis in the general application of SP. Although classical CS techniques might be directly applied to SP, due to off-grid targets reconstruction performance degrades. In this paper, applicability of compressive sensing framework and its sparse signal recovery techniques to stretch processing is studied considering off-grid cases. For sparsity based robust SP, Perturbed Parameter Orthogonal Matching Pursuit(PPOMP) algorithm is proposed. PPOMP is an iterative technique that estimates off-grid target parameters through a gradient descent. To compute the error between actual and reconstructed parameters, Earth Movers Distance(EMD) is used. Performance of proposed algorithm are compared with classical CS and SP techniques.