Biblio
Neural style transfer has drawn broad attention in recent years. However, most existing methods aim to explicitly model the transformation between different styles, and the learned model is thus not generalizable to new styles. We here attempt to separate the representations for styles and contents, and propose a generalized style transfer network consisting of style encoder, content encoder, mixer and decoder. The style encoder and content encoder are used to extract the style and content factors from the style reference images and content reference images, respectively. The mixer employs a bilinear model to integrate the above two factors and finally feeds it into a decoder to generate images with target style and content. To separate the style features and content features, we leverage the conditional dependence of styles and contents given an image. During training, the encoder network learns to extract styles and contents from two sets of reference images in limited size, one with shared style and the other with shared content. This learning framework allows simultaneous style transfer among multiple styles and can be deemed as a special 'multi-task' learning scenario. The encoders are expected to capture the underlying features for different styles and contents which is generalizable to new styles and contents. For validation, we applied the proposed algorithm to the Chinese Typeface transfer problem. Extensive experiment results on character generation have demonstrated the effectiveness and robustness of our method.
Researchers develop bioassays following rigorous experimentation in the lab that involves considerable fiscal and highly-skilled-person-hour investment. Previous work shows that a bioassay implementation can be reverse engineered by using images or video and control signals of the biochip. Hence, techniques must be devised to protect the intellectual property (IP) rights of the bioassay developer. This study is the first step in this direction and it makes the following contributions: (1) it introduces use of a sieve-valve as a security primitive to obfuscate bioassay implementations; (2) it shows how sieve-valves can be used to obscure biochip building blocks such as multiplexers and mixers; (3) it presents design rules and security metrics to design and measure obfuscated biochips. We assess the cost-security trade-offs associated with this solution and demonstrate practical sieve-valve based obfuscation on real-life biochips.
With the increase in signal's bandwidth, the conventional analog to digital converters (ADCs), operating on the basis of Shannon/Nyquist theorem, are forced to work at very high rates leading to low dynamic range and high power consumptions. This paper here tells about one Analog to Information converter developed based on compressive sensing techniques. The high sampling rates, which is the main drawback for ADCs, is being successfully reduced to 4 times lower than the conventional rates. The system is also accompanied with the advantage of low power dissipation.