Visible to the public Biblio

Filters: Keyword is Power dissipation  [Clear All Filters]
2023-07-31
Wang, Weiming, Qian, Weifeng, Tao, Kai, Wei, Zitao, Zhang, Shihua, Xia, Yan, Chen, Yong.  2022.  Investigation of Potential FEC Schemes for 800G-ZR Forward Error Correction. 2022 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.

With a record 400Gbps 100-piece-FPGA implementation, we investigate performance of the potential FEC schemes for OIF-800GZR. By comparing the power dissipation and correction threshold at 10−15 BER, we proposed the simplified OFEC for the 800G-ZR FEC.

2022-08-26
da Costa, Patricia, Pereira, Pedro T. L., Paim, Guilherme, da Costa, Eduardo, Bampi, Sergio.  2021.  Boosting the Efficiency of the Harmonics Elimination VLSI Architecture by Arithmetic Approximations. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1—4.
Approximate computing emerged as a key alternative for trading off accuracy against energy efficiency and area reduction. Error-tolerant applications, such as multimedia processing, machine learning, and signal processing, can process the information with lower-than-standard accuracy at the circuit level while still fulfilling a good and acceptable service quality at the application level. Adaptive filtering-based systems have been demonstrating high resiliency against hardware errors due to their intrinsic self-healing characteristic. This paper investigates the design space exploration of arithmetic approximations in a Very Large-Scale Integration (VLSI) harmonic elimination (HE) hardware architecture based on Least Mean Square (LMS) adaptive filters. We evaluate the Pareto front of the area- and power versus quality curves by relaxing the arithmetic precision and by adopting both approximate multipliers (AxMs) in combination with approximate adders (AxAs). This paper explores the benefits and impacts of the Dynamic Range Unbiased (DRUM), Rounding-based Approximate (RoBA), and Leading one Bit-based Approximate (LoBA) multipliers in the power dissipation, circuit area, and quality of the VLSI HE architectures. Our results highlight the LoBA 0 as the most efficient AxM applied in the HE architecture. We combine the LoBA 0 with Copy and LOA AxAs with variations in the approximation level (L). Notably, LoBA 0 and LOA with \$L=6\$ resulted in savings of 43.7% in circuit area and 45.2% in power dissipation, compared to the exact HE, which uses multiplier and adder automatically selected by the logic synthesis tool. Finally, we demonstrate that the best hardware architecture found in our investigation successfully eliminates the contaminating spurious noise (i.e., 60 Hz and its harmonics) from the signal.
2022-01-25
Rexha, Hergys, Lafond, Sébastien.  2021.  Data Collection and Utilization Framework for Edge AI Applications. 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN). :105—108.
As data being produced by IoT applications continues to explode, there is a growing need to bring computing power closer to the source of the data to meet the response-time, power dissipation and cost goals of performance-critical applications in various domains like Industrial Internet of Things (IIoT), Automated Driving, Medical Imaging or Surveillance among others. This paper proposes a data collection and utilization framework that allows runtime platform and application data to be sent to an edge and cloud system via data collection agents running close to the platform. Agents are connected to a cloud system able to train AI models to improve overall energy efficiency of an AI application executed on a edge platform. In the implementation part we show the benefits of FPGA-based platform for the task of object detection. Furthermore we show that it is feasible to collect relevant data from an FPGA platform, transmit the data to a cloud system for processing and receiving feedback actions to execute an edge AI application energy efficiently. As future work we foresee the possibility to train, deploy and continuously improve a base model able to efficiently adapt the execution of edge applications.
2018-06-11
Zabib, D. Z., Levi, I., Fish, A., Keren, O..  2017.  Secured Dual-Rail-Precharge Mux-based (DPMUX) symmetric-logic for low voltage applications. 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). :1–2.

Hardware implementations of cryptographic algorithms may leak information through numerous side channels, which can be used to reveal the secret cryptographic keys, and therefore compromise the security of the algorithm. Power Analysis Attacks (PAAs) [1] exploit the information leakage from the device's power consumption (typically measured on the supply and/or ground pins). Digital circuits consume dynamic switching energy when data propagate through the logic in each new calculation (e.g. new clock cycle). The average power dissipation of a design can be expressed by: Ptot(t) = α · (Pd(t) + Ppvt(t)) (1) where α is the activity factor (the probability that the gate will switch) and depends on the probability distribution of the inputs to the combinatorial logic. This induces a linear relationship between the power and the processed data [2]. Pd is the deterministic power dissipated by the switching of the gate, including any parasitic and intrinsic capacitances, and hence can be evaluated prior to manufacturing. Ppvt is the change in expected power consumption due to nondeterministic parameters such as process variations, mismatch, temperature, etc. In this manuscript, we describe the design of logic gates that induce data-independent (constant) α and Pd.

2017-02-21
A. Dutta, R. K. Mangang.  2015.  "Analog to information converter based on random demodulation". 2015 International Conference on Electronic Design, Computer Networks Automated Verification (EDCAV). :105-109.

With the increase in signal's bandwidth, the conventional analog to digital converters (ADCs), operating on the basis of Shannon/Nyquist theorem, are forced to work at very high rates leading to low dynamic range and high power consumptions. This paper here tells about one Analog to Information converter developed based on compressive sensing techniques. The high sampling rates, which is the main drawback for ADCs, is being successfully reduced to 4 times lower than the conventional rates. The system is also accompanied with the advantage of low power dissipation.