Visible to the public Biblio

Filters: Keyword is linear feedback shift register  [Clear All Filters]
2022-10-20
Mahesh, V V, Shahana, T K.  2020.  Design and synthesis of FIR filter banks using area and power efficient Stochastic Computing. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :662—666.
Stochastic computing is based on probability concepts which are different from conventional mathematical operations. Advantages of stochastic computing in the fields of neural networks and digital image processing have been reported in literature recently. Arithmetic operations especially multiplications can be performed either by logical AND gates in unipolar format or by EXNOR gates in bipolar format in stochastic computation. Stochastic computing is inherently fault-tolerant and requires fewer logic gates to implement arithmetic operations. Long computing time and low accuracy are the main drawbacks of this system. In this presentation, to reduce hardware requirement and delay, modified stochastic multiplication using AND gate array and multiplexer are used for the design of Finite Impulse Response Filter cores. Performance parameters such as area, power and delay for FIR filter using modified stochastic computing methods are compared with conventional floating point computation.
2022-07-14
Chittala, Abhilash, Bhupathi, Tharun, Alakunta, Durga Prasad.  2021.  Random Number Generation Algorithms for Performance Testing. 2021 5th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). :1—5.
There are numerous areas relied on random numbers. As one knows, in Cryptography, randomness plays a vital role from key generation to encrypting the systems. If randomness is not created effectively, the whole system is vulnerable to security threats where an outsider can easily predict the algorithm used to generate the random numbers in the system. Another main application where one would not touch is the role of random numbers in different devices mainly storage-related like Solid State Drives, Universal Serial Bus (USB), Secure Digital (SD) cards random performance testing. This paper focuses on various novel algorithms to generate random numbers for efficient performance evaluation of different drives. The main metrics for performance testing is random read and write performance. Here, the biggest challenge to test the random performance of the drive is not only the extent to which randomness is created but also the testing should cover the entire device (say complete NAND, NOR, etc.). So, the random number generator should generate in such a way that the random numbers should not be able to be predicted and must generate the numbers covering the entire range. This paper proposes different methods for such generators and towards the end, discusses the implementation in Field Programmable Gate Array (FPGA).
2021-08-31
Sannidhan, M S, Sudeepa, K B, Martis, Jason E, Bhandary, Abhir.  2020.  A Novel Key Generation Approach Based on Facial Image Features for Stream Cipher System. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :956—962.
Security preservation is considered as one of the major concerns in this digital world, mainly for performing any online transactions. As the time progress, it witnesses an enormous amount of security threats and stealing different kind of digital information over the online network. In this regard, lots of cryptographic algorithms based on secret key generation techniques have been implemented to boost up the security aspect of network systems that preserve the confidentiality of digital information. Despite this, intelligent intruders are still able to crack the key generation technique, thus stealing the data. In this research article, we propose an innovative approach for generating a pseudo-pseudo-random key sequence that serves as a base for the encryption/decryption process. The key generation process is carried out by extracting the essential features from a facial image and based on the extracted features; a pseudo-random key sequence that acts as a primary entity for the efficient encryption/decryption process is generated. Experimental findings related to the pseudo-random key is validated through chi-square, runs up-down and performs a period of subsequence test. Outcomes of these have subsequently passed in achieving an ideal key.
2017-02-21
A. Dutta, R. K. Mangang.  2015.  "Analog to information converter based on random demodulation". 2015 International Conference on Electronic Design, Computer Networks Automated Verification (EDCAV). :105-109.

With the increase in signal's bandwidth, the conventional analog to digital converters (ADCs), operating on the basis of Shannon/Nyquist theorem, are forced to work at very high rates leading to low dynamic range and high power consumptions. This paper here tells about one Analog to Information converter developed based on compressive sensing techniques. The high sampling rates, which is the main drawback for ADCs, is being successfully reduced to 4 times lower than the conventional rates. The system is also accompanied with the advantage of low power dissipation.