Visible to the public Biblio

Filters: Keyword is curvelet transforms  [Clear All Filters]
2021-02-15
Rout, S., Mohapatra, R. K..  2020.  Video Steganography using Curvelet Transform and Elliptic Curve Cryptography. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
Video steganography mainly deals with secret data transmission in a carrier video file without being visually noticeable by intruders. Video steganography is preferred over image steganography because a video carries more space in comparison to an image. The main concept of information hiding consists of a cover media, which is a greyscale or a color video, a secret data, which is an image or text, and a stego key. Here a secure video steganography method has been proposed which uses Curvelet Transform for secret data embedding, Elliptic Curve Cryptography for stego key encryption and a threshold algorithm for the determination of the amount of secret data to be encoded per frame. A video is a collection of various frames. The frames are selected randomly from the cover video and the frame number of the respective frames has been indexed in the stego key to find the secret data embedding location. Here, the selection of frames in a sequential manner has been avoided to improve security. For enhanced security, the stego key is also encrypted using Elliptic Curve Integrated Encryption Scheme (ECIES). Fast Discrete Curvelet Transform (FDCT) has been applied to the frames of the cover video and the curvelet coefficients have been modified to obscure the secret data to produce the stego video.
2018-01-23
Hemanth, D. J., Popescu, D. E., Mittal, M., Maheswari, S. U..  2017.  Analysis of wavelet, ridgelet, curvelet and bandelet transforms for QR code based image steganography. 2017 14th International Conference on Engineering of Modern Electric Systems (EMES). :121–126.

Transform based image steganography methods are commonly used in security applications. However, the application of several recent transforms for image steganography remains unexplored. This paper presents bit-plane based steganography method using different transforms. In this work, the bit-plane of the transform coefficients is selected to embed the secret message. The characteristics of four transforms used in the steganography have been analyzed and the results of the four transforms are compared. This has been proven in the experimental results.

2017-02-21
A. Roy, S. P. Maity.  2015.  "On segmentation of CS reconstructed MR images". 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). :1-6.

This paper addresses the issue of magnetic resonance (MR) Image reconstruction at compressive sampling (or compressed sensing) paradigm followed by its segmentation. To improve image reconstruction problem at low measurement space, weighted linear prediction and random noise injection at unobserved space are done first, followed by spatial domain de-noising through adaptive recursive filtering. Reconstructed image, however, suffers from imprecise and/or missing edges, boundaries, lines, curvatures etc. and residual noise. Curvelet transform is purposely used for removal of noise and edge enhancement through hard thresholding and suppression of approximate sub-bands, respectively. Finally Genetic algorithms (GAs) based clustering is done for segmentation of sharpen MR Image using weighted contribution of variance and entropy values. Extensive simulation results are shown to highlight performance improvement of both image reconstruction and segmentation problems.