Visible to the public Biblio

Filters: Keyword is filtration  [Clear All Filters]
2023-06-23
Sun, Haoran, Zhu, Xiaolong, Zhou, Conghua.  2022.  Deep Reinforcement Learning for Video Summarization with Semantic Reward. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :754–755.

Video summarization aims to improve the efficiency of large-scale video browsing through producting concise summaries. It has been popular among many scenarios such as video surveillance, video review and data annotation. Traditional video summarization techniques focus on filtration in image features dimension or image semantics dimension. However, such techniques can make a large amount of possible useful information lost, especially for many videos with rich text semantics like interviews, teaching videos, in that only the information relevant to the image dimension will be retained. In order to solve the above problem, this paper considers video summarization as a continuous multi-dimensional decision-making process. Specifically, the summarization model predicts a probability for each frame and its corresponding text, and then we designs reward methods for each of them. Finally, comprehensive summaries in two dimensions, i.e. images and semantics, is generated. This approach is not only unsupervised and does not rely on labels and user interaction, but also decouples the semantic and image summarization models to provide more usable interfaces for subsequent engineering use.

ISSN: 2693-9371

2021-02-15
Myasnikova, N., Beresten, M. P., Myasnikova, M. G..  2020.  Development of Decomposition Methods for Empirical Modes Based on Extremal Filtration. 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT). :1–4.
The method of extremal filtration implementing the decomposition of signals into alternating components is considered. The history of the method development is described, its mathematical substantiation is given. The method suggests signal decomposition based on the removal of known components locally determined by their extrema. The similarity of the method with empirical modes decomposition in terms of the result is shown, and their comparison is also carried out. The algorithm of extremal filtration has a simple mathematical basis that does not require the calculation of transcendental functions, which provides it with higher performance with comparable results. The advantages and disadvantages of the extremal filtration method are analyzed, and the possibility of its application for solving various technical problems is shown, i.e. the formation of diagnostic features, rapid analysis of signals, spectral and time-frequency analysis, etc. The methods for calculating spectral characteristics are described: by the parameters of the distinguished components, based on the approximation on the extrema by bell-shaped pulses. The method distribution in case of wavelet transform of signals is described. The method allows obtaining rapid evaluation of the frequencies and amplitudes (powers) of the components, which can be used as diagnostic features in solving problems of recognition, diagnosis and monitoring. The possibility of using extremal filtration in real-time systems is shown.
2020-06-29
Blazek, Petr, Gerlich, Tomas, Martinasek, Zdenek.  2019.  Scalable DDoS Mitigation System. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :617–620.
Distributed Denial of Service attacks (DDoS) are used by attackers for their effectiveness. This type of attack is one of the most devastating attacks in the Internet. Every year, the intensity of DDoS attacks increases and attackers use sophisticated multi-target DDoS attacks. In this paper, a modular system that allows to increase the filtering capacity linearly and allows to protect against the combination of DDoS attacks is designed and implemented. The main motivation for development of the modular filtering system was to find a cheap solution for filtering DDoS attacks with possibility to increase filtering capacity. The proposed system is based on open-source detection and filtration tools.
2020-03-23
Bibi, Iram, Akhunzada, Adnan, Malik, Jahanzaib, Ahmed, Ghufran, Raza, Mohsin.  2019.  An Effective Android Ransomware Detection Through Multi-Factor Feature Filtration and Recurrent Neural Network. 2019 UK/ China Emerging Technologies (UCET). :1–4.
With the increasing diversity of Android malware, the effectiveness of conventional defense mechanisms are at risk. This situation has endorsed a notable interest in the improvement of the exactitude and scalability of malware detection for smart devices. In this study, we have proposed an effective deep learning-based malware detection model for competent and improved ransomware detection in Android environment by looking at the algorithm of Long Short-Term Memory (LSTM). The feature selection has been done using 8 different feature selection algorithms. The 19 important features are selected through simple majority voting process by comparing results of all feature filtration techniques. The proposed algorithm is evaluated using android malware dataset (CI-CAndMal2017) and standard performance parameters. The proposed model outperforms with 97.08% detection accuracy. Based on outstanding performance, we endorse our proposed algorithm to be efficient in malware and forensic analysis.
2017-02-21
K. Cavalleri, B. Brinkman.  2015.  "Water treatment in context: resources and African religion". 2015 Systems and Information Engineering Design Symposium. :19-23.

Drinking water availability is a crucial problem that must be addressed in order to improve the quality of life of individuals living developing nations. Improving water supply availability is important for public health, as it is the third highest risk factor for poor health in developing nations with high mortality rates. This project researched drinking water filtration for areas of Sub-Saharan Africa near existing bodies of water, where the populations are completely reliant on collecting from surface water sources: the most contaminated water source type. Water filtration methods that can be completely created by the consumer would alleviate aid organization dependence in developing nations, put the consumers in control, and improve public health. Filtration processes pass water through a medium that will catch contaminants through physical entrapment or absorption and thus yield a cleaner effluent. When exploring different materials for filtration, removal of contaminants and hydraulic conductivity are the two most important components. Not only does the method have to treat the water, but also it has to do so in a timeframe that is quick enough to produce potable water at a rate that keeps up with everyday needs. Cement is easily accessible in Sub- Saharan regions. Most concrete mixtures are not meant to be pervious, as it is a construction material used for its compressive strength, however, reduced water content in a cement mixture gives it higher permeability. Several different concrete samples of varying thicknesses and water concentrations were created. Bacterial count tests were performed on both pre-filtered and filtered water samples. Concrete filtration does remove bacteria from drinking water, however, the method can still be improved upon.