Visible to the public Biblio

Filters: Keyword is fuzzy vault  [Clear All Filters]
2022-09-20
Bentahar, Atef, Meraoumia, Abdallah, Bendjenna, Hakim, Chitroub, Salim, Zeroual, Abdelhakim.  2021.  Eigen-Fingerprints-Based Remote Authentication Cryptosystem. 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI). :1—6.
Nowadays, biometric is a most technique to authenticate /identify human been, because its resistance against theft, loss or forgetfulness. However, biometric is subject to different transmission attacks. Today, the protection of the sensitive biometric information is a big challenge, especially in current wireless networks such as internet of things where the transmitted data is easy to sniffer. For that, this paper proposes an Eigens-Fingerprint-based biometric cryptosystem, where the biometric feature vectors are extracted by the Principal Component Analysis technique with an appropriate quantification. The key-binding principle incorporated with bit-wise and byte-wise correcting code is used for encrypting data and sharing key. Several recognition rates and computation time are used to evaluate the proposed system. The findings show that the proposed cryptosystem achieves a high security without decreasing the accuracy.
2021-03-09
Razaque, A., Amsaad, F., Almiani, M., Gulsezim, D., Almahameed, M. A., Al-Dmour, A., Khan, M. J., Ganda, R..  2020.  Successes and Failures in Exploring Biometric Algorithms in NIST Open Source Software and Data. 2020 Seventh International Conference on Software Defined Systems (SDS). :231—234.

With the emergence of advanced technology, the user authentication methods have also been improved. Authenticating the user, several secure and efficient approaches have been introduced, but the biometric authentication method is considered much safer as compared to password-driven methods. In this paper, we explore the risks, concerns, and methods by installing well-known open-source software used in Unibiometric analysis by the partners of The National Institute of Standards and Technology (NIST). Not only are the algorithms used all open source but it comes with test data and several internal open source utilities necessary to process biometric data.

2017-08-02
Sapkal, Shubhangi, Deshmukh, R. R..  2016.  Biometric Template Protection with Fuzzy Vault and Fuzzy Commitment. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :60:1–60:6.

Conventional security methods like password and ID card methods are now rapidly replacing by biometrics for identification of a person. Biometrics uses physiological or behavioral characteristics of a person. Usage of biometric raises critical privacy and security concerns that, due to the noisy nature of biometrics, cannot be addressed using standard cryptographic methods. The loss of an enrollment biometric to an attacker is a security hazard because it may allow the attacker to get an unauthorized access to the system. Biometric template can be stolen and intruder can get access of biometric system using fake input. Hence, it becomes essential to design biometric system with secure template or if the biometric template in an application is compromised, the biometric signal itself is not lost forever and a new biometric template can be issued. One way is to combine the biometrics and cryptography or use transformed data instead of original biometric template. But traditional cryptography methods are not useful in biometrics because of intra-class variation. Biometric cryptosystem can apply fuzzy vault, fuzzy commitment, helper data and secure sketch, whereas, cancelable biometrics uses distorting transforms, Bio-Hashing, and Bio-Encoding techniques. In this paper, biometric cryptosystem is presented with fuzzy vault and fuzzy commitment techniques for fingerprint recognition system.

2017-02-23
B. Yang, E. Martiri.  2015.  "Using Honey Templates to Augment Hash Based Biometric Template Protection". 2015 IEEE 39th Annual Computer Software and Applications Conference. 3:312-316.

Hash based biometric template protection schemes (BTPS), such as fuzzy commitment, fuzzy vault, and secure sketch, address the privacy leakage concern on the plain biometric template storage in a database through using cryptographic hash calculation for template verification. However, cryptographic hashes have only computational security whose being cracked shall leak the biometric feature in these BTPS; and furthermore, existing BTPS are rarely able to detect during a verification process whether a probe template has been leaked from the database or not (i.e., being used by an imposter or a genuine user). In this paper we tailor the "honeywords" idea, which was proposed to detect the hashed password cracking, to enable the detectability of biometric template database leakage. However, unlike passwords, biometric features encoded in a template cannot be renewed after being cracked and thus not straightforwardly able to be protected by the honeyword idea. To enable the honeyword idea on biometrics, diversifiability (and thus renewability) is required on the biometric features. We propose to use BTPS for his purpose in this paper and present a machine learning based protected template generation protocol to ensure the best anonymity of the generated sugar template (from a user's genuine biometric feature) among other honey ones (from synthesized biometric features).