Visible to the public Biblio

Filters: Keyword is hyperproperty  [Clear All Filters]
2020-04-03
Cheang, Kevin, Rasmussen, Cameron, Seshia, Sanjit, Subramanyan, Pramod.  2019.  A Formal Approach to Secure Speculation. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :288—28815.
Transient execution attacks like Spectre, Meltdown and Foreshadow have shown that combinations of microarchitectural side-channels can be synergistically exploited to create side-channel leaks that are greater than the sum of their parts. While both hardware and software mitigations have been proposed against these attacks, provable security has remained elusive. This paper introduces a formal methodology for enabling secure speculative execution on modern processors. We propose a new class of information flow security properties called trace property-dependent observational determinism (TPOD). We use this class to formulate a secure speculation property. Our formulation precisely characterises all transient execution vulnerabilities. We demonstrate its applicability by verifying secure speculation for several illustrative programs.
2017-02-23
T. Long, G. Yao.  2015.  "Verification for Security-Relevant Properties and Hyperproperties". 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom). :490-497.

Privacy analysis is essential in the society. Data privacy preservation for access control, guaranteed service in wireless sensor networks are important parts. In programs' verification, we not only consider about these kinds of safety and liveness properties but some security policies like noninterference, and observational determinism which have been proposed as hyper properties. Fairness is widely applied in verification for concurrent systems, wireless sensor networks and embedded systems. This paper studies verification and analysis for proving security-relevant properties and hyper properties by proposing deductive proof rules under fairness requirements (constraints).