Visible to the public Biblio

Filters: Keyword is Ensemble  [Clear All Filters]
2022-10-16
MaungMaung, AprilPyone, Kiya, Hitoshi.  2021.  Ensemble of Key-Based Models: Defense Against Black-Box Adversarial Attacks. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :95–98.
We propose a voting ensemble of models trained by using block-wise transformed images with secret keys against black-box attacks. Although key-based adversarial defenses were effective against gradient-based (white-box) attacks, they cannot defend against gradient-free (black-box) attacks without requiring any secret keys. In the proposed ensemble, a number of models are trained by using images transformed with different keys and block sizes, and then a voting ensemble is applied to the models. Experimental results show that the proposed defense achieves a clean accuracy of 95.56 % and an attack success rate of less than 9 % under attacks with a noise distance of 8/255 on the CIFAR-10 dataset.
2022-02-24
Musa, Usman Shuaibu, Chakraborty, Sudeshna, Abdullahi, Muhammad M., Maini, Tarun.  2021.  A Review on Intrusion Detection System Using Machine Learning Techniques. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :541–549.
Computer networks are exposed to cyber related attacks due to the common usage of internet, as the result of such, several intrusion detection systems (IDSs) were proposed by several researchers. Among key research issues in securing network is detecting intrusions. It helps to recognize unauthorized usage and attacks as a measure to ensure the secure the network's security. Various approaches have been proposed to determine the most effective features and hence enhance the efficiency of intrusion detection systems, the methods include, machine learning-based (ML), Bayesian based algorithm, nature inspired meta-heuristic techniques, swarm smart algorithm, and Markov neural network. Over years, the various works being carried out were evaluated on different datasets. This paper presents a thorough review on various research articles that employed single, hybrid and ensemble classification algorithms. The results metrics, shortcomings and datasets used by the studied articles in the development of IDS were compared. A future direction for potential researches is also given.
2021-04-08
Igbe, O., Saadawi, T..  2018.  Insider Threat Detection using an Artificial Immune system Algorithm. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :297—302.
Insider threats result from legitimate users abusing their privileges, causing tremendous damage or losses. Malicious insiders can be the main threats to an organization. This paper presents an anomaly detection system for detecting insider threat activities in an organization using an ensemble that consists of negative selection algorithms (NSA). The proposed system classifies a selected user activity into either of two classes: "normal" or "malicious." The effectiveness of our proposed detection system is evaluated using case studies from the computer emergency response team (CERT) synthetic insider threat dataset. Our results show that the proposed method is very effective in detecting insider threats.
2020-12-28
Abazar, T., Masjedi, P., Taheri, M..  2020.  A Binary Relevance Adaptive Model-Selection for Ensemble Steganalysis. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :77—81.

Steganalysis is an interesting classification problem in order to discriminate the images, including hidden messages from the clean ones. There are many methods, including deep CNN networks to extract fine features for this classification task. Nevertheless, a few researches have been conducted to improve the final classifier. Some state-of-the-art methods try to ensemble the networks by a voting strategy to achieve more stable performance. In this paper, a selection phase is proposed to filter improper networks before any voting. This filtering is done by a binary relevance multi-label classification approach. The Logistic Regression (LR) is chosen here as the last layer of network for classification. The large-margin Fisher’s linear discriminant (FLD) classifier is assigned to each one of the networks. It learns to discriminate the training instances which associated network is suitable for or not. Xu-Net, one of the most famous state-of-the-art Steganalysis models, is chosen as the base networks. The proposed method with different approaches is applied on the BOSSbase dataset and is compared with traditional voting and also some state-of-the-art related ensemble techniques. The results show significant accuracy improvement of the proposed method in comparison with others.

2020-05-22
Yan, Donghui, Wang, Yingjie, Wang, Jin, Wang, Honggang, Li, Zhenpeng.  2018.  K-nearest Neighbor Search by Random Projection Forests. 2018 IEEE International Conference on Big Data (Big Data). :4775—4781.
K-nearest neighbor (kNN) search has wide applications in many areas, including data mining, machine learning, statistics and many applied domains. Inspired by the success of ensemble methods and the flexibility of tree-based methodology, we propose random projection forests, rpForests, for kNN search. rpForests finds kNNs by aggregating results from an ensemble of random projection trees with each constructed recursively through a series of carefully chosen random projections. rpForests achieves a remarkable accuracy in terms of fast decay in the missing rate of kNNs and that of discrepancy in the kNN distances. rpForests has a very low computational complexity. The ensemble nature of rpForests makes it easily run in parallel on multicore or clustered computers; the running time is expected to be nearly inversely proportional to the number of cores or machines. We give theoretical insights by showing the exponential decay of the probability that neighboring points would be separated by ensemble random projection trees when the ensemble size increases. Our theory can be used to refine the choice of random projections in the growth of trees, and experiments show that the effect is remarkable.
2017-10-19
Zhang, Chenwei, Xie, Sihong, Li, Yaliang, Gao, Jing, Fan, Wei, Yu, Philip S..  2016.  Multi-source Hierarchical Prediction Consolidation. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2251–2256.
In big data applications such as healthcare data mining, due to privacy concerns, it is necessary to collect predictions from multiple information sources for the same instance, with raw features being discarded or withheld when aggregating multiple predictions. Besides, crowd-sourced labels need to be aggregated to estimate the ground truth of the data. Due to the imperfection caused by predictive models or human crowdsourcing workers, noisy and conflicting information is ubiquitous and inevitable. Although state-of-the-art aggregation methods have been proposed to handle label spaces with flat structures, as the label space is becoming more and more complicated, aggregation under a label hierarchical structure becomes necessary but has been largely ignored. These label hierarchies can be quite informative as they are usually created by domain experts to make sense of highly complex label correlations such as protein functionality interactions or disease relationships. We propose a novel multi-source hierarchical prediction consolidation method to effectively exploits the complicated hierarchical label structures to resolve the noisy and conflicting information that inherently originates from multiple imperfect sources. We formulate the problem as an optimization problem with a closed-form solution. The consolidation result is inferred in a totally unsupervised, iterative fashion. Experimental results on both synthetic and real-world data sets show the effectiveness of the proposed method over existing alternatives.
2017-03-08
Pisani, P. H., Lorena, A. C., Carvalho, A. C. P. L. F. d.  2015.  Ensemble of Adaptive Algorithms for Keystroke Dynamics. 2015 Brazilian Conference on Intelligent Systems (BRACIS). :310–315.

Biometric systems have been applied to improve the security of several computational systems. These systems analyse physiological or behavioural features obtained from the users in order to perform authentication. Biometric features should ideally meet a number of requirements, including permanence. In biometrics, permanence means that the analysed biometric feature will not change over time. However, recent studies have shown that this is not the case for several biometric modalities. Adaptive biometric systems deal with this issue by adapting the user model over time. Some algorithms for adaptive biometrics have been investigated and compared in the literature. In machine learning, several studies show that the combination of individual techniques in ensembles may lead to more accurate and stable decision models. This paper investigates the usage of some ensemble approaches to combine the output of current adaptive algorithms for biometrics. The experiments are carried out on keystroke dynamics, a biometric modality known to be subject to change over time.

2017-02-23
G. Kejela, C. Rong.  2015.  "Cross-Device Consumer Identification". 2015 IEEE International Conference on Data Mining Workshop (ICDMW). :1687-1689.

Nowadays, a typical household owns multiple digital devices that can be connected to the Internet. Advertising companies always want to seamlessly reach consumers behind devices instead of the device itself. However, the identity of consumers becomes fragmented as they switch from one device to another. A naive attempt is to use deterministic features such as user name, telephone number and email address. However consumers might refrain from giving away their personal information because of privacy and security reasons. The challenge in ICDM2015 contest is to develop an accurate probabilistic model for predicting cross-device consumer identity without using the deterministic user information. In this paper we present an accurate and scalable cross-device solution using an ensemble of Gradient Boosting Decision Trees (GBDT) and Random Forest. Our final solution ranks 9th both on the public and private LB with F0.5 score of 0.855.