Biblio
Real-time clock circuits are widely used in modern electronic systems to provide time information to the systems at the beginning of the system power-on. In this paper, we present two types of Hardware Trojan designs that employ the time information as the trigger conditions. One is a real-time based Trojan, which will attack a system at some specific realworld time. The other is a relative-time based Trojan, which will be triggered when a specific time period passes after the system is powered on. In either case when a Trojan is triggered its payload may corrupt the system or leakage internal information to the outside world. Experimental results show that the extra power consumption, area overhead and delay time are all quite small and thus the detection of the Trojans is difficult by using traditional side-channel detection methods.
Sharing cyber security data across organizational boundaries brings both privacy risks in the exposure of personal information and data, and organizational risk in disclosing internal information. These risks occur as information leaks in network traffic or logs, and also in queries made across organizations. They are also complicated by the trade-offs in privacy preservation and utility present in anonymization to manage disclosure. In this paper, we define three principles that guide sharing security information across organizations: Least Disclosure, Qualitative Evaluation, and Forward Progress. We then discuss engineering approaches that apply these principles to a distributed security system. Application of these principles can reduce the risk of data exposure and help manage trust requirements for data sharing, helping to meet our goal of balancing privacy, organizational risk, and the ability to better respond to security with shared information.