Biblio
One of the most efficient tool for human face recognition is neural networks. However, the result of recognition can be spoiled by facial expressions and other deviation from the canonical face representation. In this paper, we propose a resampling method of human faces represented by 3D point clouds. The method is based on a non-rigid Iterative Closest Point (ICP) algorithm. To improve the facial recognition performance, we use a combination of the proposed method and convolutional neural network (CNN). Computer simulation results are provided to illustrate the performance of the proposed method.
Cloud computing paradigm continues to revolutionize the way business processes are being conducted through the provision of massive resources, reliability across networks and ability to offer parallel processing. However, miniaturization, proliferation and nanotechnology within devices has enabled digitization of almost every object which eventually has seen the rise of a new technological marvel dubbed Internet of Things (IoT). IoT enables self-configurable/smart devices to connect intelligently through Radio Frequency Identification (RFID), WI-FI, LAN, GPRS and other methods by further enabling timeously processing of information. Based on these developments, the integration of the cloud and IoT infrastructures has led to an explosion of the amount of data being exchanged between devices which have in turn enabled malicious actors to use this as a platform to launch various cybercrime activities. Consequently, digital forensics provides a significant approach that can be used to provide an effective post-event response mechanism to these malicious attacks in cloud-based IoT infrastructures. Therefore, the problem being addressed is that, at the time of writing this paper, there still exist no accepted standards or frameworks for conducting digital forensic investigation on cloud-based IoT infrastructures. As a result, the authors have proposed a cloud-centric framework that is able to isolate Big data as forensic evidence from IoT (CFIBD-IoT) infrastructures for proper analysis and examination. It is the authors' opinion that if the CFIBD-IoT framework is implemented fully it will support cloud-based IoT tool creation as well as support future investigative techniques in the cloud with a degree of certainty.
Interconnect opens are known to be one of the predominant defects in nanoscale technologies. Automatic test pattern generation for open faults is challenging, because of their rather unstable behavior and the numerous electrical parameters which need to be considered. Thus, most approaches try to avoid accurate modeling of all constraints like the influence of the aggressors on the open net and use simplified fault models in order to detect as many faults as possible or make assumptions which decrease both complexity and accuracy. Yet, this leads to the problem that not only generated tests may be invalidated but also the localization of a specific fault may fail - in case such a model is used as basis for diagnosis. Furthermore, most of the models do not consider the problem of oscillating behavior, caused by feedback introduced by coupling capacitances, which occurs in almost all designs. In [1], the Robust Enhanced Aggressor Victim Model (REAV) and in [2] an extension to address the problem of oscillating behavior were introduced. The resulting model does not only consider the influence of all aggressors accurately but also guarantees robustness against oscillating behavior as well as process variations affecting the thresholds of gates driven by an open interconnect. In this work we present the first diagnostic classification algorithm for this model. This algorithm considers all constraints enforced by the REAV model accurately - and hence handles unknown values as well as oscillating behavior. In addition, it allows to distinguish faults at the same interconnect and thus reducing the area that has to be considered for physical failure analysis. Experimental results show the high efficiency of the new method handling circuits with up to 500,000 non-equivalent faults and considerably increasing the diagnostic resolution.
Controller Area Network (CAN) is the main bus network that connects electronic control units in automobiles. Although CAN protocols have been revised to improve the vehicle safety, the security weaknesses of CAN have not been fully addressed. Security threats on automobiles might be from external wireless communication or from internal malicious CAN nodes mounted on the CAN bus. Despite of various threat sources, the security weakness of CAN is the root of security problems. Due to the limited computation power and storage capacity on each CAN node, there is a lack of hardware-efficient protection methods for the CAN system without losing the compatibility to CAN protocols. To save the cost and maintain the compatibility, we propose to exploit the built-in CAN fault confinement mechanism to detect the masquerade attacks originated from the malicious CAN devices on the CAN bus. Simulation results show that our method achieves the attack misdetection rate at the order of 10-5 and reduces the encryption latency by up to 68% over the complete frame encryption method.