Visible to the public Biblio

Filters: Keyword is Multi Agent System  [Clear All Filters]
2021-03-29
Ouiazzane, S., Addou, M., Barramou, F..  2020.  Toward a Network Intrusion Detection System for Geographic Data. 2020 IEEE International conference of Moroccan Geomatics (Morgeo). :1—7.

The objective of this paper is to propose a model of a distributed intrusion detection system based on the multi-agent paradigm and the distributed file system (HDFS). Multi-agent systems (MAS) are very suitable to intrusion detection systems as they can address the issue of geographic data security in terms of autonomy, distribution and performance. The proposed system is based on a set of autonomous agents that cooperate and collaborate with each other to effectively detect intrusions and suspicious activities that may impact geographic information systems. Our system allows the detection of known and unknown computer attacks without any human intervention (Security Experts) unlike traditional intrusion detection systems that rely on knowledge bases as a mechanism to detect known attacks. The proposed model allows a real time detection of known and unknown attacks within large networks hosting geographic data.

2020-05-11
OUIAZZANE, Said, ADDOU, Malika, BARRAMOU, Fatimazahra.  2019.  A Multi-Agent Model for Network Intrusion Detection. 2019 1st International Conference on Smart Systems and Data Science (ICSSD). :1–5.
The objective of this paper is to propose a distributed intrusion detection model based on a multi agent system. Mutli Agent Systems (MAS) are very suitable for intrusion detection systems as they meet the characteristics required by the networks and Big Data issues. The MAS agents cooperate and communicate with each other to ensure the effective detection of network intrusions without the intervention of an expert as used to be in the classical intrusion detection systems relying on signature matching to detect known attacks. The proposed model helped to detect known and unknown attacks within big computer infrastructure by responding to the network requirements in terms of distribution, autonomy, responsiveness and communication. The proposed model is capable of achieving a good and a real time intrusion detection using multi-agents paradigm and Hadoop Distributed File System (HDFS).
2017-02-27
Lokesh, M. R., Kumaraswamy, Y. S..  2015.  Healing process towards resiliency in cyber-physical system: A modified danger theory based artifical immune recogization2 algorithm approach. 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS). :226–232.

Healing Process is a major role in developing resiliency in cyber-physical system where the environment is diverse in nature. Cyber-physical system is modelled with Multi Agent Paradigm and biological inspired Danger Theory based-Artificial Immune Recognization2 Algorithm Methodology towards developing healing process. The Proposed methodology is implemented in a simulation environment and percentage of Convergence rates shown in achieving accuracy in the healing process to resiliency in cyber-physical system environment is shown.