Visible to the public Biblio

Filters: Keyword is Fuzzy C-Means  [Clear All Filters]
2023-07-31
Sivasankarareddy, V., Sundari, G..  2022.  Clustering-based routing protocol using FCM-RSOA and DNA cryptography algorithm for smart building. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1—8.
The WSN nodes are arranged uniformly or randomly on the area of need for gathering the required data. The admin utilizes wireless broadband networks to connect to the Internet and acquire the required data from the base station (BS). However, these sensor nodes play a significant role in a variety of professional and industrial domains, but some of the concerns stop the growth of WSN, such as memory, transmission, battery power and processing power. The most significant issue with these restrictions is to increase the energy efficiency for WSN with rapid and trustworthy data transfer. In this designed model, the sensor nodes are clustered using the FCM (Fuzzy C-Means) clustering algorithm with the Reptile Search Optimization (RSO) for finding the centre of the cluster. The cluster head is determined by using African vulture optimization (AVO). For selecting the path of data transmission from the cluster head to the base station, the adaptive relay nodes are selected using the Fuzzy rule. These data from the base station are given to the server with a DNA cryptography encryption algorithm for secure data transmission. The performance of the designed model is evaluated with specific parameters such as average residual energy, throughput, end-to-end delay, information loss and execution time for a secure and energy-efficient routing protocol. These evaluated values for the proposed model are 0.91 %, 1.17Mbps, 1.76 ms, 0.14 % and 0.225 s respectively. Thus, the resultant values of the proposed model show that the designed clustering-based routing protocol using FCM-RSOA and DNA cryptography for smart building performs better compared to the existing techniques.
2017-02-27
Zhang, L., Li, B., Zhang, L., Li, D..  2015.  Fuzzy clustering of incomplete data based on missing attribute interval size. 2015 IEEE 9th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :101–104.

Fuzzy c-means algorithm is used to identity clusters of similar objects within a data set, while it is not directly applied to incomplete data. In this paper, we proposed a novel fuzzy c-means algorithm based on missing attribute interval size for the clustering of incomplete data. In the new algorithm, incomplete data set was transformed to interval data set according to the nearest neighbor rule. The missing attribute value was replaced by the corresponding interval median and the interval size was set as the additional property for the incomplete data to control the effect of interval size in clustering. Experiments on standard UCI data set show that our approach outperforms other clustering methods for incomplete data.