Visible to the public Biblio

Filters: Keyword is systems of systems  [Clear All Filters]
2020-07-03
Lisova, Elena, El Hachem, Jamal, Causevic, Aida.  2019.  Investigating Attack Propagation in a SoS via a Service Decomposition. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:9—14.

A term systems of systems (SoS) refers to a setup in which a number of independent systems collaborate to create a value that each of them is unable to achieve independently. Complexity of a SoS structure is higher compared to its constitute systems that brings challenges in analyzing its critical properties such as security. An SoS can be seen as a set of connected systems or services that needs to be adequately protected. Communication between such systems or services can be considered as a service itself, and it is the paramount for establishment of a SoS as it enables connections, dependencies, and a cooperation. Given that reliable and predictable communication contributes directly to a correct functioning of an SoS, communication as a service is one of the main assets to consider. Protecting it from malicious adversaries should be one of the highest priorities within SoS design and operation. This study aims to investigate the attack propagation problem in terms of service-guarantees through the decomposition into sub-services enriched with preconditions and postconditions at the service levels. Such analysis is required as a prerequisite for an efficient SoS risk assessment at the design stage of the SoS development life cycle to protect it from possibly high impact attacks capable of affecting safety of systems and humans using the system.

2017-12-04
Lier, B. van.  2017.  The industrial internet of things and cyber security: An ecological and systemic perspective on security in digital industrial ecosystems. 2017 21st International Conference on System Theory, Control and Computing (ICSTCC). :641–647.

All over the world, objects are increasingly connected in networks such as the Industrial Internet of Things. Interconnections, intercommunications and interactions are driving the development of an entirely new whole in the form of the Industrial Internet of Things. Communication and interaction are the norm both for separate components, such as cyber-physical systems, and for the functioning of the system as a whole. This new whole can be likened to a natural ecosystem where the process of homeostasis ensures the stability and security of the whole. Components of such an industrial ecosystem, or even an industrial ecosystem as a whole, are increasingly targeted by cyber attacks. Such attacks not only threaten the functioning of one or multiple components, they also constitute a threat to the functioning of the new whole. General systems theory can offer a scientific framework for the development of measures to improve the security and stability of both separate components and the new whole.

2017-02-27
Mulcahy, J. J., Huang, S..  2015.  An autonomic approach to extend the business value of a legacy order fulfillment system. 2015 Annual IEEE Systems Conference (SysCon) Proceedings. :595–600.

In the modern retailing industry, many enterprise resource planning (ERP) systems are considered legacy software systems that have become too expensive to replace and too costly to re-engineer. Countering the need to maintain and extend the business value of these systems is the need to do so in the simplest, cheapest, and least risky manner available. There are a number of approaches used by software engineers to mitigate the negative impact of evolving a legacy systems, including leveraging service-oriented architecture to automate manual tasks previously performed by humans. A relatively recent approach in software engineering focuses upon implementing self-managing attributes, or “autonomic” behavior in software applications and systems of applications in order to reduce or eliminate the need for human monitoring and intervention. Entire systems can be autonomic or they can be hybrid systems that implement one or more autonomic components to communicate with external systems. In this paper, we describe a commercial development project in which a legacy multi-channel commerce enterprise resource planning system was extended with service-oriented architecture an autonomic control loop design to communicate with an external third-party security screening provider. The goal was to reduce the cost of the human labor necessary to screen an ever-increasing volume of orders and to reduce the potential for human error in the screening process. The solution automated what was previously an inefficient, incomplete, and potentially error-prone manual process by inserting a new autonomic software component into the existing order fulfillment workflow.