Visible to the public Biblio

Filters: Keyword is Rivers  [Clear All Filters]
2020-12-01
Robinette, P., Novitzky, M., Fitzgerald, C., Benjamin, M. R., Schmidt, H..  2019.  Exploring Human-Robot Trust During Teaming in a Real-World Testbed. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :592—593.

Project Aquaticus is a human-robot teaming competition on the water involving autonomous surface vehicles and human operated motorized kayaks. Teams composed of both humans and robots share the same physical environment to play capture the flag. In this paper, we present results from seven competitions of our half-court (one participant versus one robot) game. We found that participants indicated more trust in more aggressive behaviors from robots.

2020-02-10
Barnes, Chloe M., Ekárt, Anikó, Lewis, Peter R..  2019.  Social Action in Socially Situated Agents. 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO). :97–106.
Two systems pursuing their own goals in a shared world can interact in ways that are not so explicit - such that the presence of another system alone can interfere with how one is able to achieve its own goals. Drawing inspiration from human psychology and the theory of social action, we propose the notion of employing social action in socially situated agents as a means of alleviating interference in interacting systems. Here we demonstrate that these specific issues of behavioural and evolutionary instability caused by the unintended consequences of interactions can be addressed with agents capable of a fusion of goal-rationality and traditional action, resulting in a stable society capable of achieving goals during the course of evolution.
2017-02-27
Latif, Z. A., Mohamad, M. H..  2015.  Mapping of Dengue Outbreak Distribution Using Spatial Statistics and Geographical Information System. 2015 2nd International Conference on Information Science and Security (ICISS). :1–6.

This study presents spatial analysis of Dengue Fever (DF) outbreak using Geographic Information System (GIS) in the state of Selangor, Malaysia. DF is an Aedes mosquito-borne disease. The aim of the study is to map the spread of DF outbreak in Selangor by producing a risk map while the objective is to identify high risk areas of DF by producing a risk map using GIS tools. The data used was DF dengue cases in 2012 obtained from Ministry of Health, Malaysia. The analysis was carried out using Moran's I, Average Nearest Neighbor (ANN), Kernel Density Estimation (KDE) and buffer analysis using GIS. From the Moran's I analysis, the distribution pattern of DF in Selangor clustered. From the ANN analysis, the result shows a dispersed pattern where the ratio is more than 1. The third analysis was based on KDE to locate the hot spot location. The result shows that some districts are classified as high risk areas which are Ampang, Damansara, Kapar, Kajang, Klang, Semenyih, Sungai Buloh and Petaling. The buffer analysis, area ranges between 200m. to 500m. above sea level shows a clustered pattern where the highest frequent cases in the year are at the same location. It was proven that the analysis based on the spatial statistic, spatial interpolation, and buffer analysis can be used as a method in controlling and locating the DF affection with the aid of GIS.