Biblio
Denial of service (DoS) is a process of injecting malicious packets into the network. Intrusion detection system (IDS) is a system used to investigate malicious packets in the network. Software-defined network (SDN) physically separates control plane and data plane. The control plane is moved to a centralized controller, and it makes a decision in the network from a global view. The combination between IDS and SDN allows the prevention of malicious packets to be more efficient due to the advantage of the global view in SDN. IDS needs to communicate with switches to have an access to all end-to-end traffic in the network. The high traffic in the link between switches and IDS results in congestion. The congestion between switches and IDS delays the detection and prevention of malicious traffic. To address this problem, we propose a historical database (Hdb), a scheme to reduce the traffic between switches and IDS, based on the historical information of a sender. The simulation shows that in the average, 54.1% of traffic mirrored to IDS is reduced compared to the conventional schemes.
This paper focuses on optimizing the sigmoid filter for detecting Low-Rate DoS attacks. Though sigmoid filter could help for detecting the attacker, it could severely affect the network efficiency. Unlike high rate attacks, Low-Rate DoS attacks such as ``Shrew'' and ``New Shrew'' are hard to detect. Attackers choose a malicious low-rate bandwidth to exploit the TCP's congestion control window algorithm and the re-transition timeout mechanism. We simulated the attacker traffic by editing using NS3. The Sigmoid filter was used to create a threshold bandwidth filter at the router that allowed a specific bandwidth, so when traffic that exceeded the threshold occurred, it would be dropped, or it would be redirected to a honey-pot server, instead. We simulated the Sigmoid filter using MATLAB and took the attacker's and legitimate user's traffic generated by NS-3 as the input for the Sigmoid filter in the MATLAB. We run the experiment three times with different threshold values correlated to the TCP packet size. We found the probability to detect the attacker traffic as follows: the first was 25%, the second 50% and the third 60%. However, we observed a drop in legitimate user traffic with the following probabilities, respectively: 75%, 50%, and 85%.
Security is concerned with protecting assets. The aspects of security can be applied to any situation- defense, detection and deterrence. Network security plays important role of protecting information, hardware and software on a computer network. Denial of service (DOS) attacks causes great impacts on the internet world. These attacks attempt to disrupt legitimate user's access to services. By exploiting computer's vulnerabilities, attackers easily consume victim's resources. Many special techniques have been developed to protest against DOS attacks. Some organizations constitute several defense mechanism tools to tackle the security problems. This paper has proposed various types of attacks and solutions associated with each layers of OSI model. These attacks and solutions have different impacts on the different environment. Thus the rapid growth of new technologies may constitute still worse impacts of attacks in the future.
Large numbers of smart connected devices, also named as the Internet of Things (IoT), are permeating our environments (homes, factories, cars, and also our body - with wearable devices) to collect data and act on the insight derived. Ensuring software integrity (including OS, apps, and configurations) on such smart devices is then essential to guarantee both privacy and safety. A key mechanism to protect the software integrity of these devices is remote attestation: A process that allows a remote verifier to validate the integrity of the software of a device. This process usually makes use of a signed hash value of the actual device's software, generated by dedicated hardware. While individual device attestation is a well-established technique, to date integrity verification of a very large number of devices remains an open problem, due to scalability issues. In this paper, we present SANA, the first secure and scalable protocol for efficient attestation of large sets of devices that works under realistic assumptions. SANA relies on a novel signature scheme to allow anyone to publicly verify a collective attestation in constant time and space, for virtually an unlimited number of devices. We substantially improve existing swarm attestation schemes by supporting a realistic trust model where: (1) only the targeted devices are required to implement attestation; (2) compromising any device does not harm others; and (3) all aggregators can be untrusted. We implemented SANA and demonstrated its efficiency on tiny sensor devices. Furthermore, we simulated SANA at large scale, to assess its scalability. Our results show that SANA can provide efficient attestation of networks of 1,000,000 devices, in only 2.5 seconds.
The Mobile Ad-hoc Networks (MANET) are suffering from network partitioning when there is group mobility and thus cannot efficiently provide connectivity to all nodes in the network. Autonomous Mobile Mesh Network (AMMNET) is a new class of MANET which will overcome the weakness of MANET, especially from network partitioning. However, AMMNET is vulnerable to routing attacks such as Blackhole attack in which malicious node can make itself as intragroup, intergroup or intergroup bridge router and disrupt the network. In AMMNET, To maintain connectivity, network survivability is an important aspect of reliable communication. Maintaning security is a challenge in the self organising nature of the topology. To address this weakness proposed approach measured the performance of the impact of security enhancement on AMMNET with the basis of bait detection scheme. Modified bait approach that will prevent blackhole node entering into the network and helps to maintain the reliability of the network. The proposed scheme uses the idea of Wumpus World concept from Artificial Intelligence. Modified bait scheme will prevent the blackhole attack and secures network.