Visible to the public Biblio

Filters: Keyword is secure enclaves  [Clear All Filters]
2022-05-10
Zum Felde, Hendrik Meyer, Morbitzer, Mathias, Schütte, Julian.  2021.  Securing Remote Policy Enforcement by a Multi-Enclave based Attestation Architecture. 2021 IEEE 19th International Conference on Embedded and Ubiquitous Computing (EUC). :102–108.
The concept of usage control goes beyond traditional access control by regulating not only the retrieval but also the processing of data. To be able to remotely enforce usage control policy the processing party requires a trusted execution environ-ment such as Intel SGX which creates so-called enclaves. In this paper we introduce Multi Enclave based Code from Template (MECT), an SGX-based architecture for trusted remote policy enforcement. MECT uses a multi-enclave approach in which an enclave generation service dynamically generates enclaves from pre-defined code and dynamic policy parameters. This approach leads to a small trusted computing base and highly simplified attestation while preserving functionality benefits. Our proof of concept implementation consumes customisable code from templates. We compare the implementation with other architectures regarding the trusted computing base, flexibility, performance, and modularity. This comparison highlights the security benefits for remote attestation of MECT.
2021-05-05
Chalkiadakis, Nikolaos, Deyannis, Dimitris, Karnikis, Dimitris, Vasiliadis, Giorgos, Ioannidis, Sotiris.  2020.  The Million Dollar Handshake: Secure and Attested Communications in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :63—70.

The number of applications and services that are hosted on cloud platforms is constantly increasing. Nowadays, more and more applications are hosted as services on cloud platforms, co-existing with other services in a mutually untrusted environment. Facilities such as virtual machines, containers and encrypted communication channels aim to offer isolation between the various applications and protect sensitive user data. However, such techniques are not always able to provide a secure execution environment for sensitive applications nor they offer guarantees that data are not monitored by an honest but curious provider once they reach the cloud infrastructure. The recent advancements of trusted execution environments within commodity processors, such as Intel SGX, provide a secure reverse sandbox, where code and data are isolated even from the underlying operating system. Moreover, Intel SGX provides a remote attestation mechanism, allowing the communicating parties to verify their identity as well as prove that code is executed on hardware-assisted software enclaves. Many approaches try to ensure code and data integrity, as well as enforce channel encryption schemes such as TLS, however, these techniques are not enough to achieve complete isolation and secure communications without hardware assistance or are not efficient in terms of performance. In this work, we design and implement a practical attestation system that allows the service provider to offer a seamless attestation service between the hosted applications and the end clients. Furthermore, we implement a novel caching system that is capable to eliminate the latencies introduced by the remote attestation process. Our approach allows the parties to attest one another before each communication attempt, with improved performance when compared to a standard TLS handshake.

2019-02-14
Joye, Marc, Michalevsky, Yan.  2018.  RSA Signatures Under Hardware Restrictions. Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security. :51-54.

We would like to compute RSA signatures with the help of a Hardware Security Module (HSM). But what can we do when we want to use a certain public exponent that the HSM does not allow or support? Surprisingly, this scenario comes up in real-world settings such as code-signing of Intel SGX enclaves. Intel SGX enclaves have to be signed in order to execute in release mode, using 3072-bit RSA signature scheme with a particular public exponent. However, we encountered commercial hardware security modules that do not support storing RSA keys corresponding to this exponent. We ask whether it is possible to overcome such a limitation of an HSM and answer it in the affirmative (under stated assumptions). We show how to convert RSA signatures corresponding to one public exponent, to valid RSA signatures corresponding to another exponent. We define security and show that it is not compromised by the additional public knowledge available to an adversary in this setting.