Visible to the public Biblio

Filters: Keyword is fast fail-over  [Clear All Filters]
2017-03-29
Nicol, David M., Kumar, Rakesh.  2016.  Efficient Monte Carlo Evaluation of SDN Resiliency. Proceedings of the 2016 Annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation. :143–152.

Software defined networking (SDN) is an emerging technology for controlling flows through networks. Used in the context of industrial control systems, an objective is to design configurations that have built-in protection for hardware failures in the sense that the configuration has "baked-in" back-up routes. The objective is to leave the configuration static as long as possible, minimizing the need to have the controller push in new routing and filtering rules We have designed and implemented a tool that enables us to determine the complete connectivity map from an analysis of all switch configurations in the network. We can use this tool to explore the impact of a link failure, in particular to determine whether the failure induces loss of the ability to deliver a flow even after the built-in back-up routes are used. A measure of the original configuration's resilience to link failure is the mean number of link failures required to induce the first such loss of service. The computational cost of each link failure and subsequent analysis is large, so there is much to be gained by reducing the overall cost of obtaining a statistically valid estimate of resiliency. This paper shows that when analysis of a network state can identify all as-yet-unfailed links any one of whose failure would induce loss of a flow, then we can use the technique of importance sampling to estimate the mean number of links required to fail before some flow is lost, and analyze the potential for reducing the variance of the sample statistic. We provide both theoretical and empirical evidence for significant variance reduction.