Visible to the public Biblio

Filters: Keyword is Phasor Measurement Unit  [Clear All Filters]
2023-01-20
Dey, Arnab, Chakraborty, Soham, Salapaka, Murti V..  2022.  An End-to-End Cyber-Physical Infrastructure for Smart Grid Control and Monitoring. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
In this article, we propose a generic cyber-physical framework, developed in our laboratory, for smart grid control and monitoring in real-time. Our framework is composed of four key elements: (1) system layer which embeds a physical or emulated power system network, (2) data analysis layer to execute real-time data-driven grid analysis algorithms, (3) backend layer with a generic data storage framework which supports multiple databases with functionally different architectures, and (4) visualization layer where multiple customized or commercially available user interfaces can be deployed concurrently for grid control and monitoring. These four layers are interlinked via bidirectional communication channels. Such a flexible and scalable framework provides a cohesive environment to enhance smart grid situational awareness. We demonstrate the utility of our proposed architecture with several case studies where we estimate a modified IEEE-33 bus distribution network topology entirely from synchrophasor measurements, without any prior knowledge of the grid network, and render the same on visualization platform. Three demonstrations are included with single and multiple system operators having complete and partial measurements.
2021-11-29
Qu, Yanfeng, Chen, Gong, Liu, Xin, Yan, Jiaqi, Chen, Bo, Jin, Dong.  2020.  Cyber-Resilience Enhancement of PMU Networks Using Software-Defined Networking. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
Phasor measurement unit (PMU) networks are increasingly deployed to offer timely and high-precision measurement of today's highly interconnected electric power systems. To enhance the cyber-resilience of PMU networks against malicious attacks and system errors, we develop an optimization-based network management scheme based on the software-defined networking (SDN) communication infrastructure to recovery PMU network connectivity and restore power system observability. The scheme enables fast network recovery by optimizing the path generation and installation process, and moreover, compressing the SDN rules to be installed on the switches. We develop a prototype system and perform system evaluation in terms of power system observability, recovery speed, and rule compression using the IEEE 30-bus system and IEEE 118-bus system.
Arunagirinathan, Paranietharan, Venayagamoorthy, Ganesh K..  2020.  Situational Awareness of Power System Stabilizers’ Performance in Energy Control Centers. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
Undamped power system oscillations are detrimental to stable and security of the electric grid. Historically, poorly damped low frequency rotor oscillations have caused system blackouts or brownouts. It is required to monitor the oscillation damping controllers such as power system stabilizers' (PSS) performance at energy control centers as well as at power plant control centers. Phasor measurement units (PMUs) based time response and frequency response information on PSS performance is collected. A fuzzy logic system is developed to combine the time and frequency response information to derive the situational awareness on PSS performance on synchronous generator's oscillation(s). A two-area four-machine benchmark power system is simulated on a real-time digital simulator platform. Fuzzy logic system developed is evaluated for different system disturbances. Situational awareness on PSS performance on synchronous generator's oscillation(s) allows the control center operator to enhance the power system operation more stable and secure.
2021-06-02
Shi, Jie, Foggo, Brandon, Kong, Xianghao, Cheng, Yuanbin, Yu, Nanpeng, Yamashita, Koji.  2020.  Online Event Detection in Synchrophasor Data with Graph Signal Processing. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—7.
Online detection of anomalies is crucial to enhancing the reliability and resiliency of power systems. We propose a novel data-driven online event detection algorithm with synchrophasor data using graph signal processing. In addition to being extremely scalable, our proposed algorithm can accurately capture and leverage the spatio-temporal correlations of the streaming PMU data. This paper also develops a general technique to decouple spatial and temporal correlations in multiple time series. Finally, we develop a unique framework to construct a weighted adjacency matrix and graph Laplacian for product graph. Case studies with real-world, large-scale synchrophasor data demonstrate the scalability and accuracy of our proposed event detection algorithm. Compared to the state-of-the-art benchmark, the proposed method not only achieves higher detection accuracy but also yields higher computational efficiency.
2018-02-06
Vimalkumar, K., Radhika, N..  2017.  A Big Data Framework for Intrusion Detection in Smart Grids Using Apache Spark. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :198–204.

Technological advancement enables the need of internet everywhere. The power industry is not an exception in the technological advancement which makes everything smarter. Smart grid is the advanced version of the traditional grid, which makes the system more efficient and self-healing. Synchrophasor is a device used in smart grids to measure the values of electric waves, voltages and current. The phasor measurement unit produces immense volume of current and voltage data that is used to monitor and control the performance of the grid. These data are huge in size and vulnerable to attacks. Intrusion Detection is a common technique for finding the intrusions in the system. In this paper, a big data framework is designed using various machine learning techniques, and intrusions are detected based on the classifications applied on the synchrophasor dataset. In this approach various machine learning techniques like deep neural networks, support vector machines, random forest, decision trees and naive bayes classifications are done for the synchrophasor dataset and the results are compared using metrics of accuracy, recall, false rate, specificity, and prediction time. Feature selection and dimensionality reduction algorithms are used to reduce the prediction time taken by the proposed approach. This paper uses apache spark as a platform which is suitable for the implementation of Intrusion Detection system in smart grids using big data analytics.

2017-11-20
Paramathma, M. K., Devaraj, D., Reddy, B. S..  2016.  Artificial neural network based static security assessment module using PMU measurements for smart grid application. 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS). :1–5.

Power system security is one of the key issues in the operation of smart grid system. Evaluation of power system security is a big challenge considering all the contingencies, due to huge computational efforts involved. Phasor measurement unit plays a vital role in real time power system monitoring and control. This paper presents static security assessment scheme for large scale inter connected power system with Phasor measurement unit using Artificial Neural Network. Voltage magnitude and phase angle are used as input variables of the ANN. The optimal location of PMU under base case and critical contingency cases are determined using Genetic algorithm. The performance of the proposed optimization model was tested with standard IEEE 30 bus system incorporating zero injection buses and successful results have been obtained.

2017-03-29
Rajabi, Arezoo, Bobba, Rakesh B..  2016.  A Resilient Algorithm for Power System Mode Estimation Using Synchrophasors. Proceedings of the 2Nd Annual Industrial Control System Security Workshop. :23–29.

Bulk electric systems include hundreds of synchronous generators. Faults in such systems can induce oscillations in the generators which if not detected and controlled can destabilize the system. Mode estimation is a popular method for oscillation detection. In this paper, we propose a resilient algorithm to estimate electro-mechanical oscillation modes in large scale power system in the presence of false data. In particular, we add a fault tolerance mechanism to a variant of alternating direction method of multipliers (ADMM) called S-ADMM. We evaluate our method on an IEEE 68-bus test system under different attack scenarios and show that in all the scenarios our algorithm converges well.