Biblio
Building lightweight security for low-cost pervasive devices is a major challenge considering the design requirements of a small footprint and low power consumption. Physical Unclonable Functions (PUFs) have emerged as a promising technology to provide a low-cost authentication for such devices. By exploiting intrinsic manufacturing process variations, PUFs are able to generate unique and apparently random chip identifiers. Strong-PUFs represent a variant of PUFs that have been suggested for lightweight authentication applications. Unfortunately, many of the Strong-PUFs have been shown to be susceptible to modelling attacks (i.e., using machine learning techniques) in which an adversary has access to challenge and response pairs. In this study, we propose an obfuscation technique during post-processing of Strong-PUF responses to increase the resilience against machine learning attacks. We conduct machine learning experiments using Support Vector Machines and Artificial Neural Networks on two Strong-PUFs: a 32-bit Arbiter-PUF and a 2-XOR 32-bit Arbiter-PUF. The predictability of the 32-bit Arbiter-PUF is reduced to $\approx$ 70% by using an obfuscation technique. Combining the obfuscation technique with 2-XOR 32-bit Arbiter-PUF helps to reduce the predictability to $\approx$ 64%. More reduction in predictability has been observed in an XOR Arbiter-PUF because this PUF architecture has a good uniformity. The area overhead with an obfuscation technique consumes only 788 and 1080 gate equivalents for the 32-bit Arbiter-PUF and 2-XOR 32-bit Arbiter-PUF, respectively.
This paper begins to describe a new kind of database, one that explores a diverse range of movement in the field of dance through capture of different bodies and different backgrounds - or what we are terming movement vernaculars. We re-purpose Ivan Illich's concept of 'vernacular work' [11] here to refer to those everyday forms of dance and organized movement that are informal, refractory (resistant to formal analysis), yet are socially reproduced and derived from a commons. The project investigates the notion of vernaculars in movement that is intentional and aesthetic through the development of a computational approach that highlights both similarities and differences, thereby revealing the specificities of each individual mover. This paper presents an example of how this movement database is used as a research tool, and how the fruits of that research can be added back to the database, thus adding a novel layer of annotation and further enriching the collection. Future researchers can then benefit from this layer, further refining and building upon these techniques. The creation of a robust, open source, movement lexicon repository will allow for observation, speculation, and contextualization - along with the provision of clean and complex data sets for new forms of creative expression.