Visible to the public Biblio

Filters: Keyword is Accelerometers  [Clear All Filters]
2022-04-26
Feng, Tianyi, Zhang, Zhixiang, Wong, Wai-Choong, Sun, Sumei, Sikdar, Biplab.  2021.  A Privacy-Preserving Pedestrian Dead Reckoning Framework Based on Differential Privacy. 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :1487–1492.

Pedestrian dead reckoning (PDR) is a widely used approach to estimate locations and trajectories. Accessing location-based services with trajectory data can bring convenience to people, but may also raise privacy concerns that need to be addressed. In this paper, a privacy-preserving pedestrian dead reckoning framework is proposed to protect a user’s trajectory privacy based on differential privacy. We introduce two metrics to quantify trajectory privacy and data utility. Our proposed privacy-preserving trajectory extraction algorithm consists of three mechanisms for the initial locations, stride lengths and directions. In addition, we design an adversary model based on particle filtering to evaluate the performance and demonstrate the effectiveness of our proposed framework with our collected sensor reading dataset.

2020-09-11
Ababtain, Eman, Engels, Daniel.  2019.  Security of Gestures Based CAPTCHAs. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :120—126.
We present a security analysis of several gesture CAPTCHA challenges designed to operate on mobiles. Mobile gesture CAPTCHA challenges utilize the accelerometer and the gyroscope inputs from a mobile to allow a human to solve a simple test by physically manipulating the device. We have evaluated the security of gesture CAPTCHA in mobile devices and found them resistant to a range of common automated attacks. Our study has shown that using an accelerometer and the gyroscope readings as an input to solve the CAPTCHA is difficult for malware, but easy for a real user. Gesture CAPTCHA is effective in differentiating between humans and machines.
Ababtain, Eman, Engels, Daniel.  2019.  Gestures Based CAPTCHAs the Use of Sensor Readings to Solve CAPTCHA Challenge on Smartphones. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :113—119.
We present novel CAPTCHA challenges based on user gestures designed for mobile. A gesture CAPTCHA challenge is a security mechanism to prevent malware from gaining access to network resources from mobile. Mobile devices contain a number of sensors that record the physical movement of the device. We utilized the accelerometer and gyroscope data as inputs to our novel CAPTCHAs to capture the physical manipulation of the device. We conducted an experimental study on a group of people. We discovered that younger people are able to solve this type of CAPTCHA challenges successfully in a short amount of time. We found that using accelerometer readings produces issues for some older people.
2020-03-23
Unnikrishnan, Grieshma, Mathew, Deepa, Jose, Bijoy A., Arvind, Raju.  2019.  Hybrid Route Recommender System for Smarter Logistics. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :239–244.
The condition of road surface has a significant role in land transportation. Due to poor road conditions, the logistics and supply chain industry face a drastic loss in their business. Unmaintained roads can cause damage to goods and accidents. The existing routing techniques do not consider factors like shock, temperature and tilt of goods etc. but these factors have to be considered for the logistics and supply chain industry. This paper proposes a recommender system which target management of goods in logistics. A 3 axis accelerometer is used to measure the road surface conditions. The pothole location is obtained using Global Positioning System (GPS). Using these details a hybrid recommender system is built. Hybrid recommender system combines multiple recommendation techniques to develop an effective recommender system. Here content-based and collaborative-based techniques is combined to build a hybrid recommender system. One of the popular Multiple Criteria Decision Making (MCDM) method, The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used for content based filtering and normalised Euclidean distance and KNN algorithm is used for collaborative filtering. The best route recommended by the system will be displayed to the user using a map application.
2020-02-17
Pandelea, Alexandru-Ionut, Chiroiu, Mihai-Daniel.  2019.  Password Guessing Using Machine Learning on Wearables. 2019 22nd International Conference on Control Systems and Computer Science (CSCS). :304–311.
Wearables are now ubiquitous items equipped with a multitude of sensors such as GPS, accelerometer, or Bluetooth. The raw data from this sensors are typically used in a health context. However, we can also use it for security purposes. In this paper, we present a solution that aims at using data from the sensors of a wearable device to identify the password a user is typing on a keyboard by using machine learning algorithms. Hence, the purpose is to determine whether a malicious third party application could extract sensitive data through the raw data that it has access to.
2018-08-23
Pandey, S. B., Rawat, M. D., Rathod, H. B., Chauhan, J. M..  2017.  Security throwbot. 2017 International Conference on Inventive Systems and Control (ICISC). :1–6.

We all are very much aware of IoT that is Internet of Things which is emerging technology in today's world. The new and advanced field of technology and inventions make use of IoT for better facility. The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Our project is based on IoT and other supporting techniques which can bring out required output. Security issues are everywhere now-a-days which we are trying to deal with by our project. Our security throwbot (a throwable device) will be tossed into a room after activating it and it will capture 360 degree panaromic video from a single IP camera, by using two end connectivity that is, robot end and another is user end, will bring more features to this project. Shape of the robot will be shperical so that problem of retrieving back can be solved. Easy to use and cheap to buy is one of our goal which will be helpful to police and soldiers who get stuck in situations where they have to question oneself before entering to dangerous condition/room. Our project will help them to handle and verify any area before entering by just throwing this robot and getting the sufficient results.

2018-04-02
Yadav, S., Howells, G..  2017.  Analysis of ICMetrics Features/Technology for Wearable Devices IOT Sensors. 2017 Seventh International Conference on Emerging Security Technologies (EST). :175–178.

This paper investigates the suitability of employing various measurable features derived from multiple wearable devices (Apple Watch), for the generation of unique authentication and encryption keys related to the user. This technique is termed as ICMetrics. The ICMetrics technology requires identifying the suitable features in an environment for key generation most useful for online services. This paper presents an evaluation of the feasibility of identifying a unique user based on desirable feature set and activity data collected over short and long term and explores how the number of samples being factored into the ICMetrics system affects uniqueness of the key.

2018-02-15
Murphy, J., Howells, G., McDonald-Maier, K. D..  2017.  Multi-factor authentication using accelerometers for the Internet-of-Things. 2017 Seventh International Conference on Emerging Security Technologies (EST). :103–107.

Embedded and mobile devices forming part of the Internet-of-Things (IoT) need new authentication technologies and techniques. This requirement is due to the increase in effort and time attackers will use to compromise a device, often remote, based on the possibility of a significant monetary return. This paper proposes exploiting a device's accelerometers in-built functionality to implement multi-factor authentication. An experimental embedded system designed to emulate a typical mobile device is used to implement the ideas and investigated as proof-of-concept.

2017-12-20
Lee, W. H., Lee, R. B..  2017.  Implicit Smartphone User Authentication with Sensors and Contextual Machine Learning. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :297–308.

Authentication of smartphone users is important because a lot of sensitive data is stored in the smartphone and the smartphone is also used to access various cloud data and services. However, smartphones are easily stolen or co-opted by an attacker. Beyond the initial login, it is highly desirable to re-authenticate end-users who are continuing to access security-critical services and data. Hence, this paper proposes a novel authentication system for implicit, continuous authentication of the smartphone user based on behavioral characteristics, by leveraging the sensors already ubiquitously built into smartphones. We propose novel context-based authentication models to differentiate the legitimate smartphone owner versus other users. We systematically show how to achieve high authentication accuracy with different design alternatives in sensor and feature selection, machine learning techniques, context detection and multiple devices. Our system can achieve excellent authentication performance with 98.1% accuracy with negligible system overhead and less than 2.4% battery consumption.

2017-03-08
Sarkisyan, A., Debbiny, R., Nahapetian, A..  2015.  WristSnoop: Smartphone PINs prediction using smartwatch motion sensors. 2015 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.

Smartwatches, with motion sensors, are becoming a common utility for users. With the increasing popularity of practical wearable computers, and in particular smartwatches, the security risks linked with sensors on board these devices have yet to be fully explored. Recent research literature has demonstrated the capability of using a smartphone's own accelerometer and gyroscope to infer tap locations; this paper expands on this work to demonstrate a method for inferring smartphone PINs through the analysis of smartwatch motion sensors. This study determines the feasibility and accuracy of inferring user keystrokes on a smartphone through a smartwatch worn by the user. Specifically, we show that with malware accessing only the smartwatch's motion sensors, it is possible to recognize user activity and specific numeric keypad entries. In a controlled scenario, we achieve results no less than 41% and up to 92% accurate for PIN prediction within 5 guesses.

2017-03-07
Pinsenschaum, Richard, Neff, Flaithri.  2016.  Evaluating Gesture Characteristics When Using a Bluetooth Handheld Music Controller. Proceedings of the Audio Mostly 2016. :209–214.

This paper describes a study that investigates tilt-gesture depth on a Bluetooth handheld music controller for activating and deactivating music loops. Making use of a Wii Remote's 3-axis ADXL330 accelerometer, a Max patch was programmed to receive, handle, and store incoming accelerometer data. Each loop corresponded to the front, back, left and right tilt-gesture direction, with each gesture motion triggering a loop 'On' or 'Off' depending on its playback status. The study comprised 40 undergraduate students interacting with the prototype controller for a duration of 5 minutes per person. Each participant performed three full cycles beginning with the front gesture direction and moving clockwise. This corresponded to a total of 24 trigger motions per participant. Raw data associated with tilt-gesture motion depth was scaled, analyzed and graphed. Results show significant differences between each gesture direction in terms of tilt-gesture depth, as well as issues with noise for left/right gesture motion due to dependency on Roll and Yaw values. Front and Left tilt-gesture depths displayed significantly higher threshold levels compared to the Back and Right axes. Front and Left tilt-gesture thresholds therefore allow the device to easily differentiate between intentional sample triggering and general device handling, while this is more difficult for Back and Left directions. Future work will include finding an alternative method for evaluating intentional tilt-gesture triggering on the Back and Left axes, as well as utilizing two 2-axis accelerometers to garner clean data from the Left and Right axes.