Visible to the public Biblio

Found 152 results

Filters: Keyword is software engineering  [Clear All Filters]
Conference Paper
Salehie, Mazeiar, Pasquale, Liliana, Omoronyia, Inah, Nuseibeh, Bashar.  2012.  Adaptive Security and Privacy in Smart Grids: A Software Engineering Vision. 2012 First International Workshop on Software Engineering Challenges for the Smart Grid (SE-SmartGrids). :46–49.

Despite the benefits offered by smart grids, energy producers, distributors and consumers are increasingly concerned about possible security and privacy threats. These threats typically manifest themselves at runtime as new usage scenarios arise and vulnerabilities are discovered. Adaptive security and privacy promise to address these threats by increasing awareness and automating prevention, detection and recovery from security and privacy requirements' failures at runtime by re-configuring system controls and perhaps even changing requirements. This paper discusses the need for adaptive security and privacy in smart grids by presenting some motivating scenarios. We then outline some research issues that arise in engineering adaptive security. We particularly scrutinize published reports by NIST on smart grid security and privacy as the basis for our discussions.

Nguyen, Phuong T., Di Sipio, Claudio, Di Rocco, Juri, Di Penta, Massimiliano, Di Ruscio, Davide.  2021.  Adversarial Attacks to API Recommender Systems: Time to Wake Up and Smell the Coffee? 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :253—265.
Recommender systems in software engineering provide developers with a wide range of valuable items to help them complete their tasks. Among others, API recommender systems have gained momentum in recent years as they became more successful at suggesting API calls or code snippets. While these systems have proven to be effective in terms of prediction accuracy, there has been less attention for what concerns such recommenders’ resilience against adversarial attempts. In fact, by crafting the recommenders’ learning material, e.g., data from large open-source software (OSS) repositories, hostile users may succeed in injecting malicious data, putting at risk the software clients adopting API recommender systems. In this paper, we present an empirical investigation of adversarial machine learning techniques and their possible influence on recommender systems. The evaluation performed on three state-of-the-art API recommender systems reveals a worrying outcome: all of them are not immune to malicious data. The obtained result triggers the need for effective countermeasures to protect recommender systems against hostile attacks disguised in training data.
Brown, Brandon, Richardson, Alexicia, Smith, Marcellus, Dozier, Gerry, King, Michael C..  2020.  The Adversarial UFP/UFN Attack: A New Threat to ML-based Fake News Detection Systems? 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :1523–1527.
In this paper, we propose two new attacks: the Adversarial Universal False Positive (UFP) Attack and the Adversarial Universal False Negative (UFN) Attack. The objective of this research is to introduce a new class of attack using only feature vector information. The results show the potential weaknesses of five machine learning (ML) classifiers. These classifiers include k-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forrest (RF), a Support Vector Machine (SVM) with a Radial Basis Function (RBF) Kernel, and XGBoost (XGB).
Sharma, Sarika, Kumar, Deepak.  2019.  Agile Release Planning Using Natural Language Processing Algorithm. 2019 Amity International Conference on Artificial Intelligence (AICAI). :934–938.
Once the requirement is gathered in agile, it is broken down into smaller pre-defined format called user stories. These user stories are then scoped in various sprint releases and delivered accordingly. Release planning in Agile becomes challenging when the number of user stories goes up in hundreds. In such scenarios it is very difficult to manually identify similar user stories and package them together into a release. Hence, this paper suggests application of natural language processing algorithms for identifying similar user stories and then scoping them into a release This paper takes the approach to build a word corpus for every project release identified in the project and then to convert the provided user stories into a vector of string using Java utility for calculating top 3 most occurring words from the given project corpus in a user story. Once all the user stories are represented as vector array then by using RV coefficient NLP algorithm the user stories are clustered into various releases of the software project. Using the proposed approach, the release planning for large and complex software engineering projects can be simplified resulting into efficient planning in less time. The automated commercial tools like JIRA and Rally can be enhanced to include suggested algorithms for managing release planning in Agile.
Sai, C. C., Prakash, C. S., Jose, J., Mana, S. C., Samhitha, B. K..  2020.  Analysing Android App Privacy Using Classification Algorithm. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :551–555.
The interface permits the client to scan for a subjective utility on the Play Store; the authorizations posting and the protection arrangement are then routinely recovered, on all events imaginable. The client has then the capability of choosing an interesting authorization, and a posting of pertinent sentences are separated with the guide of the privateer's inclusion and introduced to them, alongside a right depiction of the consent itself. Such an interface allows the client to rapidly assess the security-related dangers of an Android application, by utilizing featuring the pertinent segments of the privateer's inclusion and by introducing helpful data about shrewd authorizations. A novel procedure is proposed for the assessment of privateer's protection approaches with regards to Android applications. The gadget actualized widely facilitates the way toward understanding the security ramifications of placing in 1/3 birthday celebration applications and it has just been checked in a situation to feature troubling examples of uses. The gadget is created in light of expandability, and correspondingly inclines in the strategy can without trouble be worked in to broaden the unwavering quality and adequacy. Likewise, if your application handles non-open or delicate individual information, it would be ideal if you also allude to the extra necessities in the “Individual and Sensitive Information” territory underneath. These Google Play necessities are notwithstanding any prerequisites endorsed by method for material security or data assurance laws. It has been proposed that, an individual who needs to perform the establishment and utilize any 1/3 festival application doesn't perceive the significance and which methods for the consents mentioned by method for an application, and along these lines sincerely gives all the authorizations as a final product of which unsafe applications furthermore get set up and work their malevolent leisure activity in the rear of the scene.
Han, Sung-Hwa.  2021.  Analysis of Data Transforming Technology for Malware Detection. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :224–229.
As AI technology advances and its use increases, efforts to incorporate machine learning for malware detection are increasing. However, for malware learning, a standardized data set is required. Because malware is unstructured data, it cannot be directly learned. In order to solve this problem, many studies have attempted to convert unstructured data into structured data. In this study, the features and limitations of each were analyzed by investigating and analyzing the method of converting unstructured data proposed in each study into structured data. As a result, most of the data conversion techniques suggest conversion mechanisms, but the scope of each technique has not been determined. The resulting data set is not suitable for use as training data because it has infinite properties.
Alvarez, E. D., Correa, B. D., Arango, I. F..  2016.  An analysis of XSS, CSRF and SQL injection in colombian software and web site development. 2016 8th Euro American Conference on Telematics and Information Systems (EATIS). :1–5.

Software development and web applications have become fundamental in our lives. Millions of users access these applications to communicate, obtain information and perform transactions. However, these users are exposed to many risks; commonly due to the developer's lack of experience in security protocols. Although there are many researches about web security and hacking protection, there are plenty of vulnerable websites. This article focuses in analyzing 3 main hacking techniques: XSS, CSRF, and SQL Injection over a representative group of Colombian websites. Our goal is to obtain information about how Colombian companies and organizations give (or not) relevance to security; and how the final user could be affected.

Bures, Tomas, Gerostathopoulos, Ilias, Hnětynka, Petr, Seifermann, Stephan, Walter, Maximilian, Heinrich, Robert.  2021.  Aspect-Oriented Adaptation of Access Control Rules. 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). :363–370.
Cyber-physical systems (CPS) and IoT systems are nowadays commonly designed as self-adaptive, endowing them with the ability to dynamically reconFigure to reflect their changing environment. This adaptation concerns also the security, as one of the most important properties of these systems. Though the state of the art on adaptivity in terms of security related to these systems can often deal well with fully anticipated situations in the environment, it becomes a challenge to deal with situations that are not or only partially anticipated. This uncertainty is however omnipresent in these systems due to humans in the loop, open-endedness and only partial understanding of the processes happening in the environment. In this paper, we partially address this challenge by featuring an approach for tackling access control in face of partially unanticipated situations. We base our solution on special kind of aspects that build on existing access control system and create a second level of adaptation that addresses the partially unanticipated situations by modifying access control rules. The approach is based on our previous work where we have analyzed and classified uncertainty in security and trust in such systems and have outlined the idea of access-control related situational patterns. The aspects that we present in this paper serve as means for application-specific specialization of the situational patterns. We showcase our approach on a simplified but real-life example in the domain of Industry 4.0 that comes from one of our industrial projects.
Messe, Nan, Belloir, Nicolas, Chiprianov, Vanea, El-Hachem, Jamal, Fleurquin, Régis, Sadou, Salah.  2020.  An Asset-Based Assistance for Secure by Design. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :178—187.
With the growing numbers of security attacks causing more and more serious damages in software systems, security cannot be added as an afterthought in software development. It has to be built in from the early development phases such as requirement and design. The role responsible for designing a software system is termed an “architect”, knowledgeable about the system architecture design, but not always well-trained in security. Moreover, involving other security experts into the system design is not always possible due to time-to-market and budget constraints. To address these challenges, we propose to define an asset-based security assistance in this paper, to help architects design secure systems even if these architects have limited knowledge in security. This assistance helps alert threats, and integrate the security controls over vulnerable parts of system into the architecture model. The central concept enabling this assistance is that of asset. We apply our proposal on a telemonitoring case study to show that automating such an assistance is feasible.
Yee, George O. M..  2019.  Attack Surface Identification and Reduction Model Applied in Scrum. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.

Today's software is full of security vulnerabilities that invite attack. Attackers are especially drawn to software systems containing sensitive data. For such systems, this paper presents a modeling approach especially suited for Serum or other forms of agile development to identify and reduce the attack surface. The latter arises due to the locations containing sensitive data within the software system that are reachable by attackers. The approach reduces the attack surface by changing the design so that the number of such locations is reduced. The approach performs these changes on a visual model of the software system. The changes are then considered for application to the actual system to improve its security.

[Anonymous].  2021.  An Automated Pipeline for Privacy Leak Analysis of Android Applications. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1048—1050.
We propose an automated pipeline for analyzing privacy leaks in Android applications. By using a combination of dynamic and static analysis, we validate the results from each other to improve accuracy. Compare to the state-of-the-art approaches, we not only capture the network traffic for analysis, but also look into the data flows inside the application. We particularly focus on the privacy leakage caused by third-party services and high-risk permissions. The proposed automated approach will combine taint analysis, permission analysis, network traffic analysis, and dynamic function tracing during run-time to identify private information leaks. We further implement an automatic validation and complementation process to reduce false positives. A small-scale experiment has been conducted on 30 Android applications and a large-scale experiment on more than 10,000 Android applications is in progress.
Nakano, Yuto, Nakamura, Toru, Kobayashi, Yasuaki, Ozu, Takashi, Ishizaka, Masahito, Hashimoto, Masayuki, Yokoyama, Hiroyuki, Miyake, Yutaka, Kiyomoto, Shinsaku.  2021.  Automatic Security Inspection Framework for Trustworthy Supply Chain. 2021 IEEE/ACIS 19th International Conference on Software Engineering Research, Management and Applications (SERA). :45—50.
Threats and risks against supply chains are increasing and a framework to add the trustworthiness of supply chain has been considered. In this framework, organisations in the supply chain validate the conformance to the pre-defined requirements. The results of validations are linked each other to achieve the trustworthiness of the entire supply chain. In this paper, we further consider this framework for data supply chains. First, we implement the framework and evaluate the performance. The evaluation shows 500 digital evidences (logs) can be checked in 0.28 second. We also propose five methods to improve the performance as well as five new functionalities to improve usability. With these functionalities, the framework also supports maintaining the certificate chain.
Kannavara, R., Vangore, J., Roberts, W., Lindholm, M., Shrivastav, P..  2018.  Automating Threat Intelligence for SDL. 2018 IEEE Cybersecurity Development (SecDev). :137–137.
Threat intelligence is very important in order to execute a well-informed Security Development Lifecycle (SDL). Although there are many readily available solutions supporting tactical threat intelligence focusing on enterprise Information Technology (IT) infrastructure, the lack of threat intelligence solutions focusing on SDL is a known gap which is acknowledged by the security community. To address this shortcoming, we present a solution to automate the process of mining open source threat information sources to deliver product specific threat indicators designed to strategically inform the SDL while continuously monitoring for disclosures of relevant potential vulnerabilities during product design, development, and beyond deployment.
Bagri, Bagri, Gupta, Gupta.  2019.  Automation Framework for Software Vulnerability Exploitability Assessment. 2019 Global Conference for Advancement in Technology (GCAT). :1–7.
Software has become an integral part of every industry and organization. Due to improvement in technology and lack of expertise in coding techniques, software vulnerabilities are increasing day-by-day in the software development sector. The time gap between the identification of the vulnerabilities and their automated exploit attack is decreasing. This gives rise to the need for detection and prevention of security risks and development of secure software. Earlier the security risk is identified and corrected the better it is. Developers needs a framework which can report the security flaws in their system and reduce the chances of exploitation of these flaws by some malicious user. Common Vector Scoring System (CVSS) is a De facto metrics system used to assess the exploitability of vulnerabilities. CVSS exploitability measures use subjective values based on the views of experts. It considers mainly two factors, Access Vector (AV) and Authentication (AU). CVSS does not specify on what basis the third-factor Access Complexity (AC) is measured, whether or not it considers software properties. Our objective is to come up with a framework that automates the process of identifying vulnerabilities using software structural properties. These properties could be attack entry points, vulnerability locations, presence of dangerous system calls, and reachability analysis. This framework has been tested on two open source softwares - Apache HTTP server and Mozilla Firefox.
Mulcahy, J. J., Huang, S..  2015.  An autonomic approach to extend the business value of a legacy order fulfillment system. 2015 Annual IEEE Systems Conference (SysCon) Proceedings. :595–600.

In the modern retailing industry, many enterprise resource planning (ERP) systems are considered legacy software systems that have become too expensive to replace and too costly to re-engineer. Countering the need to maintain and extend the business value of these systems is the need to do so in the simplest, cheapest, and least risky manner available. There are a number of approaches used by software engineers to mitigate the negative impact of evolving a legacy systems, including leveraging service-oriented architecture to automate manual tasks previously performed by humans. A relatively recent approach in software engineering focuses upon implementing self-managing attributes, or “autonomic” behavior in software applications and systems of applications in order to reduce or eliminate the need for human monitoring and intervention. Entire systems can be autonomic or they can be hybrid systems that implement one or more autonomic components to communicate with external systems. In this paper, we describe a commercial development project in which a legacy multi-channel commerce enterprise resource planning system was extended with service-oriented architecture an autonomic control loop design to communicate with an external third-party security screening provider. The goal was to reduce the cost of the human labor necessary to screen an ever-increasing volume of orders and to reduce the potential for human error in the screening process. The solution automated what was previously an inefficient, incomplete, and potentially error-prone manual process by inserting a new autonomic software component into the existing order fulfillment workflow.

Ghosal, Sandip, Shyamasundar, R. K..  2021.  An Axiomatic Approach to Detect Information Leaks in Concurrent Programs. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :31—35.
Realizing flow security in a concurrent environment is extremely challenging, primarily due to non-deterministic nature of execution. The difficulty is further exacerbated from a security angle if sequential threads disclose control locations through publicly observable statements like print, sleep, delay, etc. Such observations lead to internal and external timing attacks. Inspired by previous works that use classical Hoare style proof systems for establishing correctness of distributed (real-time) programs, in this paper, we describe a method for finding information leaks in concurrent programs through the introduction of leaky assertions at observable program points. Specifying leaky assertions akin to classic assertions, we demonstrate how information leaks can be detected in a concurrent context. To our knowledge, this is the first such work that enables integration of different notions of non-interference used in functional and security context. While the approach is sound and relatively complete in the classic sense, it enables the use of algorithmic techniques that enable programmers to come up with leaky assertions that enable checking for information leaks in sensitive applications.
Moore, A. P., Cassidy, T. M., Theis, M. C., Bauer, D., Rousseau, D. M., Moore, S. B..  2018.  Balancing Organizational Incentives to Counter Insider Threat. 2018 IEEE Security and Privacy Workshops (SPW). :237–246.

Traditional security practices focus on negative incentives that attempt to force compliance through constraints, monitoring, and punishment. This paper describes a missing dimension of most organizations' insider threat defense-one that explicitly considers positive incentives for attracting individuals to act in the interests of the organization. Positive incentives focus on properties of the organizational context of workforce management practices - including those relating to organizational supportiveness, coworker connectedness, and job engagement. Without due attention to the organizational context in which insider threats occur, insider misbehaviors may simply reoccur as a natural response to counterproductive or dysfunctional management practices. A balanced combination of positive and negative incentives can improve employees' relationships with the organization and provide a means for employees to better cope with personal and professional stressors. An insider threat program that balances organizational incentives can become an advocate for the workforce and a means for improving employee work life - a welcome message to employees who feel threatened by programs focused on discovering insider wrongdoing.

Ibrahim, Ahmed, El-Ramly, Mohammad, Badr, Amr.  2019.  Beware of the Vulnerability! How Vulnerable are GitHub's Most Popular PHP Applications? 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1–7.
The presence of software vulnerabilities is a serious threat to any software project. Exploiting them can compromise system availability, data integrity, and confidentiality. Unfortunately, many open source projects go for years with undetected ready-to-exploit critical vulnerabilities. In this study, we investigate the presence of software vulnerabilities in open source projects and the factors that influence this presence. We analyzed the top 100 open source PHP applications in GitHub using a static analysis vulnerability scanner to examine how common software vulnerabilities are. We also discussed which vulnerabilities are most present and what factors contribute to their presence. We found that 27% of these projects are insecure, with a median number of 3 vulnerabilities per vulnerable project. We found that the most common type is injection vulnerabilities, which made 58% of all detected vulnerabilities. Out of these, cross-site scripting (XSS) was the most common and made 43.5% of all vulnerabilities found. Statistical analysis revealed that project activities like branching, pulling, and committing have a moderate positive correlation with the number of vulnerabilities in the project. Other factors like project popularity, number of releases, and number of issues had almost no influence on the number of vulnerabilities. We recommend that open source project owners should set secure code development guidelines for their project members and establish secure code reviews as part of the project's development process.
Lee, Sungho, Lee, Hyogun, Ryu, Sukyoung.  2020.  Broadening Horizons of Multilingual Static Analysis: Semantic Summary Extraction from C Code for JNI Program Analysis. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :127–137.
Most programming languages support foreign language interoperation that allows developers to integrate multiple modules implemented in different languages into a single multilingual program. While utilizing various features from multiple languages expands expressivity, differences in language semantics require developers to understand the semantics of multiple languages and their inter-operation. Because current compilers do not support compile-time checking for interoperation, they do not help developers avoid in-teroperation bugs. Similarly, active research on static analysis and bug detection has been focusing on programs written in a single language. In this paper, we propose a novel approach to analyze multilingual programs statically. Unlike existing approaches that extend a static analyzer for a host language to support analysis of foreign function calls, our approach extracts semantic summaries from programs written in guest languages using a modular analysis technique, and performs a whole-program analysis with the extracted semantic summaries. To show practicality of our approach, we design and implement a static analyzer for multilingual programs, which analyzes JNI interoperation between Java and C. Our empirical evaluation shows that the analyzer is scalable in that it can construct call graphs for large programs that use JNI interoperation, and useful in that it found 74 genuine interoperation bugs in real-world Android JNI applications.
Williams, Laurie.  2017.  Building Forensics in: Supporting the Investigation of Digital Criminal Activities (Invited Talk). Proceedings of the 1st ACM SIGSOFT International Workshop on Software Engineering and Digital Forensics. :1–1.
Logging mechanisms that capture detailed traces of user activity, including creating, reading, updating, and deleting (CRUD) data, facilitate meaningful forensic analysis following a security or privacy breach. However, software requirements often inadequately and inconsistently state “what” user actions should be logged, thus hindering meaningful forensic analysis. In this talk, we will explore a variety of techniques for building a software system that supports forensic analysis. We will discuss systematic heuristics-driven and patterns-driven processes for identifying log events that must be logged based on user actions and potential accidental and malicious use, as described in natural language software artifacts. We then discuss systematic process for creating a black-box test suite for verifying the identified log events are logged. Using the results of executing the black-box test suite, we propose and evaluate a security metric for measuring the forensic-ability of user activity logs.
Singi, Kapil, Kaulgud, Vikrant, Bose, R.P. Jagadeesh Chandra, Podder, Sanjay.  2019.  CAG: Compliance Adherence and Governance in Software Delivery Using Blockchain. 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). :32—39.

The software development life cycle (SDLC) starts with business and functional specifications signed with a client. In addition to this, the specifications also capture policy / procedure / contractual / regulatory / legislation / standard compliances with respect to a given client industry. The SDLC must adhere to service level agreements (SLAs) while being compliant to development activities, processes, tools, frameworks, and reuse of open-source software components. In today's world, global software development happens across geographically distributed (autonomous) teams consuming extraordinary amounts of open source components drawn from a variety of disparate sources. Although this is helping organizations deal with technical and economic challenges, it is also increasing unintended risks, e.g., use of a non-complaint license software might lead to copyright issues and litigations, use of a library with vulnerabilities pose security risks etc. Mitigation of such risks and remedial measures is a challenge due to lack of visibility and transparency of activities across these distributed teams as they mostly operate in silos. We believe a unified model that non-invasively monitors and analyzes the activities of distributed teams will help a long way in building software that adhere to various compliances. In this paper, we propose a decentralized CAG - Compliance Adherence and Governance framework using blockchain technologies. Our framework (i) enables the capturing of required data points based on compliance specifications, (ii) analyzes the events for non-conformant behavior through smart contracts, (iii) provides real-time alerts, and (iv) records and maintains an immutable audit trail of various activities.

Pandey, Ashutosh, Khan, Rijwan, Srivastava, Akhilesh Kumar.  2018.  Challenges in Automation of Test Cases for Mobile Payment Apps. 2018 4th International Conference on Computational Intelligence Communication Technology (CICT). :1–4.
Software Engineering is a field of new challenges every day. With every passing day, new technologies emerge. There was an era of web Applications, but the time has changed and most of the web Applications are available as Mobile Applications as well. The Mobile Applications are either android based or iOS based. To deliver error free, secure and reliable Application, it is necessary to test the Applications properly. Software testing is a phase of software development life cycle, where we test an Application in all aspects. Nowadays different type of tools are available for testing an Application automatically but still we have too many challenges for applying test cases on a given Application. In this paper the authors will discuss the challenges of automation of test cases for a Mobile based payment Application.
Slavin, R., Hui Shen, Jianwei Niu.  2012.  Characterizations and boundaries of security requirements patterns. Requirements Patterns (RePa), 2012 IEEE Second International Workshop on. :48-53.

Very often in the software development life cycle, security is applied too late or important security aspects are overlooked. Although the use of security patterns is gaining popularity, the current state of security requirements patterns is such that there is not much in terms of a defining structure. To address this issue, we are working towards defining the important characteristics as well as the boundaries for security requirements patterns in order to make them more effective. By examining an existing general pattern format that describes how security patterns should be structured and comparing it to existing security requirements patterns, we are deriving characterizations and boundaries for security requirements patterns. From these attributes, we propose a defining format. We hope that these can reduce user effort in elicitation and specification of security requirements patterns.

Sutcliffe, Richard J., Kowarsch, Benjamin.  2016.  Closing the Barn Door: Re-Prioritizing Safety, Security, and Reliability. Proceedings of the 21st Western Canadian Conference on Computing Education. :1:1–1:15.

Past generations of software developers were well on the way to building a software engineering mindset/gestalt, preferring tools and techniques that concentrated on safety, security, reliability, and code re-usability. Computing education reflected these priorities and was, to a great extent organized around these themes, providing beginning software developers a basis for professional practice. In more recent times, economic and deadline pressures and the de-professionalism of practitioners have combined to drive a development agenda that retains little respect for quality considerations. As a result, we are now deep into a new and severe software crisis. Scarcely a day passes without news of either a debilitating data or website hack, or the failure of a mega-software project. Vendors, individual developers, and possibly educators can anticipate an equally destructive flood of malpractice litigation, for the argument that they systematically and recklessly ignored known best development practice of long standing is irrefutable. Yet we continue to instruct using methods and to employ development tools we know, or ought to know, are inherently insecure, unreliable, and unsafe, and that produce software of like ilk. The authors call for a renewed professional and educational focus on software quality, focusing on redesigned tools that enable and encourage known best practice, combined with reformed educational practices that emphasize writing human readable, safe, secure, and reliable software. Practitioners can only deploy sound management techniques, appropriate tool choice, and best practice development methodologies such as thorough planning and specification, scope management, factorization, modularity, safety, appropriate team and testing strategies, if those ideas and techniques are embedded in the curriculum from the beginning. The authors have instantiated their ideas in the form of their highly disciplined new version of Niklaus Wirth's 1980s Modula-2 programming notation under the working moniker Modula-2 R10. They are now working on an implementation that will be released under a liberal open source license in the hope that it will assist in reforming the CS curriculum around a best practices core so as to empower would-be professionals with the intellectual and practical mindset to begin resolving the software crisis. They acknowledge there is no single software engineering silver bullet, but assert that professional techniques can be inculcated throughout a student's four-year university tenure, and if implemented in the workplace, these can greatly reduce the likelihood of multiplied IT failures at the hands of our graduates. The authors maintain that professional excellence is a necessary mindset, a habit of self-discipline that must be intentionally embedded in all aspects of one's education, and subsequently drive all aspects of one's practice, including, but by no means limited to, the choice and use of programming tools.

Lin, B., Chen, X., Wang, L..  2017.  A Cloud-Based Trust Evaluation Scheme Using a Vehicular Social Network Environment. 2017 24th Asia-Pacific Software Engineering Conference (APSEC). :120–129.

New generation communication technologies (e.g., 5G) enhance interactions in mobile and wireless communication networks between devices by supporting a large-scale data sharing. The vehicle is such kind of device that benefits from these technologies, so vehicles become a significant component of vehicular networks. Thus, as a classic application of Internet of Things (IoT), the vehicular network can provide more information services for its human users, which makes the vehicular network more socialized. A new concept is then formed, namely "Vehicular Social Networks (VSNs)", which bring both benefits of data sharing and challenges of security. Traditional public key infrastructures (PKI) can guarantee user identity authentication in the network; however, PKI cannot distinguish untrustworthy information from authorized users. For this reason, a trust evaluation mechanism is required to guarantee the trustworthiness of information by distinguishing malicious users from networks. Hence, this paper explores a trust evaluation algorithm for VSNs and proposes a cloud-based VSN architecture to implement the trust algorithm. Experiments are conducted to investigate the performance of trust algorithm in a vehicular network environment through building a three-layer VSN model. Simulation results reveal that the trust algorithm can be efficiently implemented by the proposed three-layer model.