Visible to the public Biblio

Filters: Keyword is Physical Memory  [Clear All Filters]
2020-03-30
Kim, Sejin, Oh, Jisun, Kim, Yoonhee.  2019.  Data Provenance for Experiment Management of Scientific Applications on GPU. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
Graphics Processing Units (GPUs) are getting popularly utilized for multi-purpose applications in order to enhance highly performed parallelism of computation. As memory virtualization methods in GPU nodes are not efficiently provided to deal with diverse memory usage patterns for these applications, the success of their execution depends on exclusive and limited use of physical memory in GPU environments. Therefore, it is important to predict a pattern change of GPU memory usage during runtime execution of an application. Data provenance extracted from application characteristics, GPU runtime environments, input, and execution patterns from runtime monitoring, is defined for supporting application management to set runtime configuration and predict an experimental result, and utilize resource with co-located applications. In this paper, we define data provenance of an application on GPUs and manage data by profiling the execution of CUDA scientific applications. Data provenance management helps to predict execution patterns of other similar experiments and plan efficient resource configuration.
2017-03-07
Jaina, J., Suma, G. S., Dija, S., Thomas, K. L..  2015.  Extracting network connections from Windows 7 64-bit physical memory. 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). :1–4.

Nowadays, Memory Forensics is more acceptable in Cyber Forensics Investigation because malware authors and attackers choose RAM or physical memory for storing critical information instead of hard disk. The volatile physical memory contains forensically relevant artifacts such as user credentials, chats, messages, running processes and its details like used dlls, files, command and network connections etc. Memory Forensics involves acquiring the memory dump from the Suspect's machine and analyzing the acquired dump to find out crucial evidence with the help of windows pre-defined kernel data structures. While retrieving different artifacts from these data structures, finding the network connections from Windows 7 system's memory dump is a very challenging task. This is because the data structures that store network connections in earlier versions of Windows are not present in Windows 7. In this paper, a methodology is described for efficiently retrieving details of network related activities from Windows 7 x64 memory dump. This includes remote and local IP addresses and associated port information corresponding to each of the running processes. This can provide crucial information in cyber crime investigation.