Biblio
The plethora of mobile apps introduce critical challenges to digital forensics practitioners, due to the diversity and the large number (millions) of mobile apps available to download from Google play, Apple store, as well as hundreds of other online app stores. Law enforcement investigators often find themselves in a situation that on the seized mobile phone devices, there are many popular and less-popular apps with interface of different languages and functionalities. Investigators would not be able to have sufficient expert-knowledge about every single app, sometimes nor even a very basic understanding about what possible evidentiary data could be discoverable from these mobile devices being investigated. Existing literature in digital forensic field showed that most such investigations still rely on the investigator's manual analysis using mobile forensic toolkits like Cellebrite and Encase. The problem with such manual approaches is that there is no guarantee on the completeness of such evidence discovery. Our goal is to develop an automated mobile app analysis tool to analyze an app and discover what types of and where forensic evidentiary data that app generate and store locally on the mobile device or remotely on external 3rd-party server(s). With the app analysis tool, we will build a database of mobile apps, and for each app, we will create a list of app-generated evidence in terms of data types, locations (and/or sequence of locations) and data format/syntax. The outcome from this research will help digital forensic practitioners to reduce the complexity of their case investigations and provide a better completeness guarantee of evidence discovery, thereby deliver timely and more complete investigative results, and eventually reduce backlogs at crime labs. In this paper, we will present the main technical approaches for us to implement a dynamic Taint analysis tool for Android apps forensics. With the tool, we have analyzed 2,100 real-world Android apps. For each app, our tool produces the list of evidentiary data (e.g., GPS locations, device ID, contacts, browsing history, and some user inputs) that the app could have collected and stored on the devices' local storage in the forms of file or SQLite database. We have evaluated our tool using both benchmark apps and real-world apps. Our results demonstrated that the initial success of our tool in accurately discovering the evidentiary data.
In this paper, we discuss the digital forensic procedure and techniques for analyzing the local artifacts from four popular Instant Messaging applications in Android. As part of our findings, the user chat messages details and contacts were investigated for each application. By using two smartphones with different brands and the latest Android operating systems as experimental objects, we conducted digital investigations in a forensically sound manner. We summarize our findings regarding the different Instant Messaging chat modes and the corresponding encryption status of artifacts for each of the four applications. Our findings can be helpful to many mobile forensic investigations. Additionally, these findings may present values to Android system developers, Android mobile app developers, mobile security researchers as well as mobile users.
Digital Forensics is an area of Forensics Science that uses the application of scientific method toward crime investigation. The thwarting of forensic evidence is known as anti-forensics, the aim of which is ambiguous in the sense that it could be bad or good. The aim of this project is to simulate digital crimes scenario and carry out forensic and anti-forensic analysis to enhance security. This project uses several forensics and anti-forensic tools and techniques to carry out this work. The data analyzed were gotten from result of the simulation. The results reveal that although it might be difficult to investigate digital crime but with the help of sophisticated forensic tools/anti-forensics tools it can be accomplished.
The rise of malware attack and data leakage is putting the Internet at a higher risk. Digital forensic examiners responsible for cyber security incident need to continually update their processes, knowledge and tools due to changing technology. These attack activities can be investigated by means of Digital Triage Forensics (DTF) methodologies. DTF is a procedural model for the crime scene investigation of digital forensic applications. It takes place as a way of gathering quick intelligence, and presents methods of conducting pre/post-blast investigations. A DTF framework of Window malware forensic toolkit is further proposed. It is also based on ISO/IEC 27037: 2012 - guidelines for specific activities in the handling of digital evidence. The argument is made for a careful use of digital forensic investigations to improve the overall quality of expert examiners. This solution may improve the speed and quality of pre/post-blast investigations. By considering how triage solutions are being implemented into digital investigations, this study presents a critical analysis of malware forensics. The analysis serves as feedback for integrating digital forensic considerations, and specifies directions for further standardization efforts.