Visible to the public Biblio

Filters: Keyword is malware forensics  [Clear All Filters]
2019-07-01
Amjad, N., Afzal, H., Amjad, M. F., Khan, F. A..  2018.  A Multi-Classifier Framework for Open Source Malware Forensics. 2018 IEEE 27th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :106-111.

Traditional anti-virus technologies have failed to keep pace with proliferation of malware due to slow process of their signatures and heuristics updates. Similarly, there are limitations of time and resources in order to perform manual analysis on each malware. There is a need to learn from this vast quantity of data, containing cyber attack pattern, in an automated manner to proactively adapt to ever-evolving threats. Machine learning offers unique advantages to learn from past cyber attacks to handle future cyber threats. The purpose of this research is to propose a framework for multi-classification of malware into well-known categories by applying different machine learning models over corpus of malware analysis reports. These reports are generated through an open source malware sandbox in an automated manner. We applied extensive pre-modeling techniques for data cleaning, features exploration and features engineering to prepare training and test datasets. Best possible hyper-parameters are selected to build machine learning models. These prepared datasets are then used to train the machine learning classifiers and to compare their prediction accuracy. Finally, these results are validated through a comprehensive 10-fold cross-validation methodology. The best results are achieved through Gaussian Naive Bayes classifier with random accuracy of 96% and 10-Fold Cross Validation accuracy of 91.2%. The said framework can be deployed in an operational environment to learn from malware attacks for proactively adapting matching counter measures.

2017-03-07
Kao, D. Y., Wu, G. J..  2015.  A Digital Triage Forensics framework of Window malware forensic toolkit: Based on ISO}/IEC 27037:2012. 2015 International Carnahan Conference on Security Technology (ICCST). :217–222.

The rise of malware attack and data leakage is putting the Internet at a higher risk. Digital forensic examiners responsible for cyber security incident need to continually update their processes, knowledge and tools due to changing technology. These attack activities can be investigated by means of Digital Triage Forensics (DTF) methodologies. DTF is a procedural model for the crime scene investigation of digital forensic applications. It takes place as a way of gathering quick intelligence, and presents methods of conducting pre/post-blast investigations. A DTF framework of Window malware forensic toolkit is further proposed. It is also based on ISO/IEC 27037: 2012 - guidelines for specific activities in the handling of digital evidence. The argument is made for a careful use of digital forensic investigations to improve the overall quality of expert examiners. This solution may improve the speed and quality of pre/post-blast investigations. By considering how triage solutions are being implemented into digital investigations, this study presents a critical analysis of malware forensics. The analysis serves as feedback for integrating digital forensic considerations, and specifies directions for further standardization efforts.