Visible to the public Biblio

Filters: Keyword is URL  [Clear All Filters]
2020-12-11
Huang, S., Chuang, T., Huang, S., Ban, T..  2019.  Malicious URL Linkage Analysis and Common Pattern Discovery. 2019 IEEE International Conference on Big Data (Big Data). :3172—3179.

Malicious domain names are consistently changing. It is challenging to keep blacklists of malicious domain names up-to-date because of the time lag between its creation and detection. Even if a website is clean itself, it does not necessarily mean that it won't be used as a pivot point to redirect users to malicious destinations. To address this issue, this paper demonstrates how to use linkage analysis and open-source threat intelligence to visualize the relationship of malicious domain names whilst verifying their categories, i.e., drive-by download, unwanted software etc. Featured by a graph-based model that could present the inter-connectivity of malicious domain names in a dynamic fashion, the proposed approach proved to be helpful for revealing the group patterns of different kinds of malicious domain names. When applied to analyze a blacklisted set of URLs in a real enterprise network, it showed better effectiveness than traditional methods and yielded a clearer view of the common patterns in the data.

2020-09-28
Rodriguez, German, Torres, Jenny, Flores, Pamela, Benavides, Eduardo, Nuñez-Agurto, Daniel.  2019.  XSStudent: Proposal to Avoid Cross-Site Scripting (XSS) Attacks in Universities. 2019 3rd Cyber Security in Networking Conference (CSNet). :142–149.
QR codes are the means to offer more direct and instant access to information. However, QR codes have shown their deficiency, being a very powerful attack vector, for example, to execute phishing attacks. In this study, we have proposed a solution that allows controlling access to the information offered by QR codes. Through a scanner designed in APP Inventor which has been called XSStudent, a system has been built that analyzes the URLs obtained and compares them with a previously trained system. This study was executed by means of a controlled attack to the users of the university who through a flyer with a QR code and a fictional link accessed an infected page with JavaScript code that allowed a successful cross-site scripting attack. The results indicate that 100% of the users are vulnerable to this type of attacks, so also, with our proposal, an attack executed in the universities using the Beef software would be totally blocked.
2018-09-12
Rafiuddin, M. F. B., Minhas, H., Dhubb, P. S..  2017.  A dark web story in-depth research and study conducted on the dark web based on forensic computing and security in Malaysia. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). :3049–3055.
The following is a research conducted on the Dark Web to study and identify the ins and outs of the dark web, what the dark web is all about, the various methods available to access the dark web and many others. The researchers have also included the steps and precautions taken before the dark web was opened. Apart from that, the findings and the website links / URL are also included along with a description of the sites. The primary usage of the dark web and some of the researcher's experience has been further documented in this research paper.
2018-05-09
Zeng, Y. G..  2017.  Identifying Email Threats Using Predictive Analysis. 2017 International Conference on Cyber Security And Protection Of Digital Services (Cyber Security). :1–2.

Malicious emails pose substantial threats to businesses. Whether it is a malware attachment or a URL leading to malware, exploitation or phishing, attackers have been employing emails as an effective way to gain a foothold inside organizations of all kinds. To combat email threats, especially targeted attacks, traditional signature- and rule-based email filtering as well as advanced sandboxing technology both have their own weaknesses. In this paper, we propose a predictive analysis approach that learns the differences between legit and malicious emails through static analysis, creates a machine learning model and makes detection and prediction on unseen emails effectively and efficiently. By comparing three different machine learning algorithms, our preliminary evaluation reveals that a Random Forests model performs the best.

2018-01-10
Buber, E., Dırı, B., Sahingoz, O. K..  2017.  Detecting phishing attacks from URL by using NLP techniques. 2017 International Conference on Computer Science and Engineering (UBMK). :337–342.

Nowadays, cyber attacks affect many institutions and individuals, and they result in a serious financial loss for them. Phishing Attack is one of the most common types of cyber attacks which is aimed at exploiting people's weaknesses to obtain confidential information about them. This type of cyber attack threats almost all internet users and institutions. To reduce the financial loss caused by this type of attacks, there is a need for awareness of the users as well as applications with the ability to detect them. In the last quarter of 2016, Turkey appears to be second behind China with an impact rate of approximately 43% in the Phishing Attack Analysis report between 45 countries. In this study, firstly, the characteristics of this type of attack are explained, and then a machine learning based system is proposed to detect them. In the proposed system, some features were extracted by using Natural Language Processing (NLP) techniques. The system was implemented by examining URLs used in Phishing Attacks before opening them with using some extracted features. Many tests have been applied to the created system, and it is seen that the best algorithm among the tested ones is the Random Forest algorithm with a success rate of 89.9%.

2017-04-20
Mhana, Samer Attallah, Din, Jamilah Binti, Atan, Rodziah Binti.  2016.  Automatic generation of Content Security Policy to mitigate cross site scripting. 2016 2nd International Conference on Science in Information Technology (ICSITech). :324–328.

Content Security Policy (CSP) is powerful client-side security layer that helps in mitigating and detecting wide ranges of Web attacks including cross-site scripting (XSS). However, utilizing CSP by site administrators is a fallible process and may require significant changes in web application code. In this paper, we propose an approach to help site administers to overcome these limitations in order to utilize the full benefits of CSP mechanism which leads to more immune sites from XSS. The algorithm is implemented as a plugin. It does not interfere with the Web application original code. The plugin can be “installed” on any other web application with minimum efforts. The algorithm can be implemented as part of Web Server layer, not as part of the business logic layer. It can be extended to support generating CSP for contents that are modified by JavaScript after loading. Current approach inspects the static contents of URLs.

2017-03-07
Johnson, R., Kiourtis, N., Stavrou, A., Sritapan, V..  2015.  Analysis of content copyright infringement in mobile application markets. 2015 APWG Symposium on Electronic Crime Research (eCrime). :1–10.

As mobile devices increasingly become bigger in terms of display and reliable in delivering paid entertainment and video content, we also see a rise in the presence of mobile applications that attempt to profit by streaming pirated content to unsuspected end-users. These applications are both paid and free and in the case of free applications, the source of funding appears to be advertisements that are displayed while the content is streamed to the device. In this paper, we assess the extent of content copyright infringement for mobile markets that span multiple platforms (iOS, Android, and Windows Mobile) and cover both official and unofficial mobile markets located across the world. Using a set of search keywords that point to titles of paid streaming content, we discovered 8,592 Android, 5,550 iOS, and 3,910 Windows mobile applications that matched our search criteria. Out of those applications, hundreds had links to either locally or remotely stored pirated content and were not developed, endorsed, or, in many cases, known to the owners of the copyrighted contents. We also revealed the network locations of 856,717 Uniform Resource Locators (URLs) pointing to back-end servers and cyber-lockers used to communicate the pirated content to the mobile application.

Lakhita, Yadav, S., Bohra, B., Pooja.  2015.  A review on recent phishing attacks in Internet. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :1312–1315.

The development of internet comes with the other domain that is cyber-crime. The record and intelligently can be exposed to a user of illegal activity so that it has become important to make the technology reliable. Phishing techniques include domain of email messages. Phishing emails have hosted such a phishing website, where a click on the URL or the malware code as executing some actions to perform is socially engineered messages. Lexically analyzing the URLs can enhance the performance and help to differentiate between the original email and the phishing URL. As assessed in this study, in addition to textual analysis of phishing URL, email classification is successful and results in a highly precise anti phishing.