Biblio
In this paper, we focus on energy management of distributed generators (DGs) and energy storage system (ESS) in microgrids (MG) considering uncertainties in renewable energy and load demand. The MG energy management problem is formulated as a two-stage stochastic programming model based on optimization principle. Then, the optimization model is decomposed into a mixed integer quadratic programming problem by using discrete stochastic scenarios to approximate the continuous random variables. A Scenarios generation approach based on time-homogeneous Markov chain model is proposed to generate simulated time-series of renewable energy generation and load demand. Finally, the proposed stochastic programming model is tested in a typical LV network and solved by Matlab optimization toolbox. The simulation results show that the proposed stochastic programming model has a better performance to obtain robust scheduling solutions and lower the operating cost compared to the deterministic optimization modeling methods.
The initiative to protect against future cyber crimes requires a collaborative effort from all types of agencies spanning industry, academia, federal institutions, and military agencies. Therefore, a Cybersecurity Information Exchange (CYBEX) framework is required to facilitate breach/patch related information sharing among the participants (firms) to combat cyber attacks. In this paper, we formulate a non-cooperative cybersecurity information sharing game that can guide: (i) the firms (players)1 to independently decide whether to “participate in CYBEX and share” or not; (ii) the CYBEX framework to utilize the participation cost dynamically as incentive (to attract firms toward self-enforced sharing) and as a charge (to increase revenue). We analyze the game from an evolutionary game-theoretic strategy and determine the conditions under which the players' self-enforced evolutionary stability can be achieved. We present a distributed learning heuristic to attain the evolutionary stable strategy (ESS) under various conditions. We also show how CYBEX can wisely vary its pricing for participation to increase sharing as well as its own revenue, eventually evolving toward a win-win situation.