Biblio
Recommender systems have become quite popular recently. However, such systems are vulnerable to several types of attacks that target user ratings. One such attack is the Sybil attack where an entity masquerades as several identities with the intention of diverting user ratings. In this work, we propose evolutionary game theory as a possible solution to the Sybil attack in recommender systems. After modeling the attack, we use replicator dynamics to solve for evolutionary stable strategies. Our results show that under certain conditions that are easily achievable by a system administrator, the probability of an attack strategy drops to zero implying degraded fitness for Sybil nodes that eventually die out.
The initiative to protect against future cyber crimes requires a collaborative effort from all types of agencies spanning industry, academia, federal institutions, and military agencies. Therefore, a Cybersecurity Information Exchange (CYBEX) framework is required to facilitate breach/patch related information sharing among the participants (firms) to combat cyber attacks. In this paper, we formulate a non-cooperative cybersecurity information sharing game that can guide: (i) the firms (players)1 to independently decide whether to “participate in CYBEX and share” or not; (ii) the CYBEX framework to utilize the participation cost dynamically as incentive (to attract firms toward self-enforced sharing) and as a charge (to increase revenue). We analyze the game from an evolutionary game-theoretic strategy and determine the conditions under which the players' self-enforced evolutionary stability can be achieved. We present a distributed learning heuristic to attain the evolutionary stable strategy (ESS) under various conditions. We also show how CYBEX can wisely vary its pricing for participation to increase sharing as well as its own revenue, eventually evolving toward a win-win situation.