Visible to the public Biblio

Filters: Keyword is military agencies  [Clear All Filters]
2019-12-18
Kim, Kyoungmin, You, Youngin, Park, Mookyu, Lee, Kyungho.  2018.  DDoS Mitigation: Decentralized CDN Using Private Blockchain. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :693–696.
Distributed Denial of Service (DDoS) attacks are intense and are targeted to major infrastructure, governments and military organizations in each country. There are a lot of mitigations about DDoS, and the concept of Content Delivery Network (CDN) has been able to avoid attacks on websites. However, since the existing CDN system is fundamentally centralized, it may be difficult to prevent DDoS. This paper describes the distributed CDN Schema using Private Blockchain which solves the problem of participation of existing transparent and unreliable nodes. This will explain DDoS mitigation that can be used by military and government agencies.
2017-03-07
Tosh, D., Sengupta, S., Kamhoua, C., Kwiat, K., Martin, A..  2015.  An evolutionary game-theoretic framework for cyber-threat information sharing. 2015 IEEE International Conference on Communications (ICC). :7341–7346.

The initiative to protect against future cyber crimes requires a collaborative effort from all types of agencies spanning industry, academia, federal institutions, and military agencies. Therefore, a Cybersecurity Information Exchange (CYBEX) framework is required to facilitate breach/patch related information sharing among the participants (firms) to combat cyber attacks. In this paper, we formulate a non-cooperative cybersecurity information sharing game that can guide: (i) the firms (players)1 to independently decide whether to “participate in CYBEX and share” or not; (ii) the CYBEX framework to utilize the participation cost dynamically as incentive (to attract firms toward self-enforced sharing) and as a charge (to increase revenue). We analyze the game from an evolutionary game-theoretic strategy and determine the conditions under which the players' self-enforced evolutionary stability can be achieved. We present a distributed learning heuristic to attain the evolutionary stable strategy (ESS) under various conditions. We also show how CYBEX can wisely vary its pricing for participation to increase sharing as well as its own revenue, eventually evolving toward a win-win situation.