Visible to the public Biblio

Filters: Keyword is domain name  [Clear All Filters]
2020-02-10
Chen, Yige, Zang, Tianning, Zhang, Yongzheng, Zhou, Yuan, Wang, Yipeng.  2019.  Rethinking Encrypted Traffic Classification: A Multi-Attribute Associated Fingerprint Approach. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–11.

With the unprecedented prevalence of mobile network applications, cryptographic protocols, such as the Secure Socket Layer/Transport Layer Security (SSL/TLS), are widely used in mobile network applications for communication security. The proven methods for encrypted video stream classification or encrypted protocol detection are unsuitable for the SSL/TLS traffic. Consequently, application-level traffic classification based networking and security services are facing severe challenges in effectiveness. Existing encrypted traffic classification methods exhibit unsatisfying accuracy for applications with similar state characteristics. In this paper, we propose a multiple-attribute-based encrypted traffic classification system named Multi-Attribute Associated Fingerprints (MAAF). We develop MAAF based on the two key insights that the DNS traces generated during the application runtime contain classification guidance information and that the handshake certificates in the encrypted flows can provide classification clues. Apart from the exploitation of key insights, MAAF employs the context of the encrypted traffic to overcome the attribute-lacking problem during the classification. Our experimental results demonstrate that MAAF achieves 98.69% accuracy on the real-world traceset that consists of 16 applications, supports the early prediction, and is robust to the scale of the training traceset. Besides, MAAF is superior to the state-of-the-art methods in terms of both accuracy and robustness.

2019-11-26
Shirazi, Hossein, Bezawada, Bruhadeshwar, Ray, Indrakshi.  2018.  "Kn0W Thy Doma1N Name": Unbiased Phishing Detection Using Domain Name Based Features. Proceedings of the 23Nd ACM on Symposium on Access Control Models and Technologies. :69-75.

Phishing websites remain a persistent security threat. Thus far, machine learning approaches appear to have the best potential as defenses. But, there are two main concerns with existing machine learning approaches for phishing detection. The first is the large number of training features used and the lack of validating arguments for these feature choices. The second concern is the type of datasets used in the literature that are inadvertently biased with respect to the features based on the website URL or content. To address these concerns, we put forward the intuition that the domain name of phishing websites is the tell-tale sign of phishing and holds the key to successful phishing detection. Accordingly, we design features that model the relationships, visual as well as statistical, of the domain name to the key elements of a phishing website, which are used to snare the end-users. The main value of our feature design is that, to bypass detection, an attacker will find it very difficult to tamper with the visual content of the phishing website without arousing the suspicion of the end user. Our feature set ensures that there is minimal or no bias with respect to a dataset. Our learning model trains with only seven features and achieves a true positive rate of 98% and a classification accuracy of 97%, on sample dataset. Compared to the state-of-the-art work, our per data instance classification is 4 times faster for legitimate websites and 10 times faster for phishing websites. Importantly, we demonstrate the shortcomings of using features based on URLs as they are likely to be biased towards specific datasets. We show the robustness of our learning algorithm by testing on unknown live phishing URLs and achieve a high detection accuracy of \$99.7%\$.

2017-03-07
Kumar, B., Kumar, P., Mundra, A., Kabra, S..  2015.  DC scanner: Detecting phishing attack. 2015 Third International Conference on Image Information Processing (ICIIP). :271–276.

Data mining has been used as a technology in various applications of engineering, sciences and others to analysis data of systems and to solve problems. Its applications further extend towards detecting cyber-attacks. We are presenting our work with simple and less efforts similar to data mining which detects email based phishing attacks. This work digs html contents of emails and web pages referred. Also domains and domain related authority details of these links, script codes associated to web pages are analyzed to conclude for the probability of phishing attacks.