Biblio
Smart Grid cyber-security sounds to be a critical issue, because of widespread development of information technology. To achieve secure and reliable operation, the complexity of human automation interaction (HAI) necessitates more sophisticated and intelligent methodologies. In this paper, an adaptive autonomy fuzzy expert system is developed using gradient descent algorithm to determine the Level of Automation (LOA), based on the changing of Performance Shaping Factors (PSF). These PSFs indicate the effects of environmental conditions on the performance of HAI. The major advantage of this method is that the fuzzy rule or membership function can be learnt without changing the form of the fuzzy rule in conventional fuzzy control. Because of data shortage, Leave-One-Out Cross-Validation (LOOCV) technique is applied for assessing how the results of proposed system generalizes to the new contingency situations. The expert system database is extracted from superior experts' judgments. In order to regard the importance of each PSF, weighted rules are also considered. In addition, some new environmental conditions are introduced that has not been seen before. Nine scenarios are discussed to reveal the performance of the proposed system. Results confirm that the presented fuzzy expert system can effectively calculates the proper LOA even in the new contingency situations.
The use of risk information can help software engineers identify software components that are likely vulnerable or require extra attention when testing. Some studies have shown that the requirements risk-based approaches can be effective in improving the effectiveness of regression testing techniques. However, the risk estimation processes used in such approaches can be subjective, time-consuming, and costly. In this research, we introduce a fuzzy expert system that emulates human thinking to address the subjectivity related issues in the risk estimation process in a systematic and an efficient way and thus further improve the effectiveness of test case prioritization. Further, the required data for our approach was gathered by employing a semi-automated process that made the risk estimation process less subjective. The empirical results indicate that the new prioritization approach can improve the rate of fault detection over several existing test case prioritization techniques, while reducing threats to subjective risk estimation.
Security and making trust is the first step toward development in both real and virtual societies. Internet-based development is inevitable. Increasing penetration of technology in the internet banking and its effectiveness in contributing to banking profitability and prosperity requires that satisfied customers turn into loyal customers. Currently, a large number of cyber attacks have been focused on online banking systems, and these attacks are considered as a significant security threat. Banks or customers might become the victim of the most complicated financial crime, namely internet fraud. This study has developed an intelligent system that enables detecting the user's abnormal behavior in online banking. Since the user's behavior is associated with uncertainty, the system has been developed based on the fuzzy theory, This enables it to identify user behaviors and categorize suspicious behaviors with various levels of intensity. The performance of the fuzzy expert system has been evaluated using an receiver operating characteristic curve, which provides the accuracy of 94%. This expert system is optimistic to be used for improving e-banking services security and quality.