Visible to the public Biblio

Filters: Keyword is DDoS Defense  [Clear All Filters]
2023-02-17
Wu, Hua, Zhang, Xuange, Chen, Tingzheng, Cheng, Guang, Hu, Xiaoyan.  2022.  IM-Shield: A Novel Defense System against DDoS Attacks under IP Spoofing in High-speed Networks. ICC 2022 - IEEE International Conference on Communications. :4168–4173.
DDoS attacks are usually accompanied by IP spoofing, but the availability of existing DDoS defense systems for high-speed networks decreases when facing DDoS attacks with IP spoofing. Although IP traceback technologies are proposed to focus on IP spoofing in DDoS attacks, there are problems in practical application such as the need to change existing protocols and extensive infrastructure support. To defend against DDoS attacks under IP spoofing in high-speed networks, we propose a novel DDoS defense system, IM-Shield. IM-Shield uses the address pair consisting of the upper router interface MAC address and the destination IP address for DDoS attack detection. IM-Shield implements fine-grained defense against DDoS attacks under IP spoofing by filtering the address pairs of attack traffic without requiring protocol and infrastructure extensions to be applied on the Internet. Detection experiments using the public dataset show that in a 10Gbps high-speed network, the detection precision of IM-Shield for DDoS attacks under IP spoofing is higher than 99.9%; and defense experiments simulating real-time processing in a 10Gbps high-speed network show that IM-Shield can effectively defend against DDoS attacks under IP spoofing.
2020-06-29
Wehbi, Khadijeh, Hong, Liang, Al-salah, Tulha, Bhutta, Adeel A.  2019.  A Survey on Machine Learning Based Detection on DDoS Attacks for IoT Systems. 2019 SoutheastCon. :1–6.
Internet of Things (IoT) is transforming the way we live today, improving the quality of living standard and growing the world economy by having smart devices around us making decisions and performing our daily tasks and chores. However, securing the IoT system from malicious attacks is a very challenging task. Some of the most common malicious attacks are Denial of service (DoS), and Distributed Denial of service (DDoS) attacks, which have been causing major security threats to all networks and specifically to limited resource IoT devices. As security will always be a primary factor for enabling most IoT applications, developing a comprehensive detection method that effectively defends against DDoS attacks and can provide 100% detection for DDoS attacks in IoT is a primary goal for the future of IoT. The development of such a method requires a deep understanding of the methods that have been used thus far in the detection of DDoS attacks in the IoT environment. In our survey, we try to emphasize some of the most recent Machine Learning (ML) approaches developed for the detection of DDoS attacks in IoT networks along with their advantage and disadvantages. Comparison between the performances of selected approaches is also provided.
2019-12-18
Neupane, Roshan Lal, Neely, Travis, Chettri, Nishant, Vassell, Mark, Zhang, Yuanxun, Calyam, Prasad, Durairajan, Ramakrishnan.  2018.  Dolus: Cyber Defense Using Pretense Against DDoS Attacks in Cloud Platforms. Proceedings of the 19th International Conference on Distributed Computing and Networking. :30:1–30:10.
Cloud-hosted services are being increasingly used in online businesses in e.g., retail, healthcare, manufacturing, entertainment due to benefits such as scalability and reliability. These benefits are fueled by innovations in orchestration of cloud platforms that make them totally programmable as Software Defined everything Infrastructures (SDxI). At the same time, sophisticated targeted attacks such as Distributed Denial-of-Service (DDoS) are growing on an unprecedented scale threatening the availability of online businesses. In this paper, we present a novel defense system called Dolus to mitigate the impact of DDoS attacks launched against high-value services hosted in SDxI-based cloud platforms. Our Dolus system is able to initiate a 'pretense' in a scalable and collaborative manner to deter the attacker based on threat intelligence obtained from attack feature analysis in a two-stage ensemble learning scheme. Using foundations from pretense theory in child play, Dolus takes advantage of elastic capacity provisioning via 'quarantine virtual machines' and SDxI policy co-ordination across multiple network domains to deceive the attacker by creating a false sense of success. From the time gained through pretense initiation, Dolus enables cloud service providers to decide on a variety of policies to mitigate the attack impact, without disrupting the cloud services experience for legitimate users. We evaluate the efficacy of Dolus using a GENI Cloud testbed and demonstrate its real-time capabilities to: (a) detect DDoS attacks and redirect attack traffic to quarantine resources to engage the attacker under pretense, and (b) coordinate SDxI policies to possibly block DDoS attacks closer to the attack source(s).
2017-03-07
Zeb, K., Baig, O., Asif, M. K..  2015.  DDoS attacks and countermeasures in cyberspace. 2015 2nd World Symposium on Web Applications and Networking (WSWAN). :1–6.

In cyberspace, availability of the resources is the key component of cyber security along with confidentiality and integrity. Distributed Denial of Service (DDoS) attack has become one of the major threats to the availability of resources in computer networks. It is a challenging problem in the Internet. In this paper, we present a detailed study of DDoS attacks on the Internet specifically the attacks due to protocols vulnerabilities in the TCP/IP model, their countermeasures and various DDoS attack mechanisms. We thoroughly review DDoS attacks defense and analyze the strengths and weaknesses of different proposed mechanisms.