Visible to the public Biblio

Filters: Keyword is Cricket World Cup  [Clear All Filters]
2017-03-07
Burnap, P., Javed, A., Rana, O. F., Awan, M. S..  2015.  Real-time classification of malicious URLs on Twitter using machine activity data. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :970–977.

Massive online social networks with hundreds of millions of active users are increasingly being used by Cyber criminals to spread malicious software (malware) to exploit vulnerabilities on the machines of users for personal gain. Twitter is particularly susceptible to such activity as, with its 140 character limit, it is common for people to include URLs in their tweets to link to more detailed information, evidence, news reports and so on. URLs are often shortened so the endpoint is not obvious before a person clicks the link. Cyber criminals can exploit this to propagate malicious URLs on Twitter, for which the endpoint is a malicious server that performs unwanted actions on the person's machine. This is known as a drive-by-download. In this paper we develop a machine classification system to distinguish between malicious and benign URLs within seconds of the URL being clicked (i.e. `real-time'). We train the classifier using machine activity logs created while interacting with URLs extracted from Twitter data collected during a large global event - the Superbowl - and test it using data from another large sporting event - the Cricket World Cup. The results show that machine activity logs produce precision performances of up to 0.975 on training data from the first event and 0.747 on a test data from a second event. Furthermore, we examine the properties of the learned model to explain the relationship between machine activity and malicious software behaviour, and build a learning curve for the classifier to illustrate that very small samples of training data can be used with only a small detriment to performance.