Visible to the public Biblio

Filters: Keyword is cyber-attack detection  [Clear All Filters]
2023-05-11
Jawdeh, Shaya Abou, Choi, Seungdeog, Liu, Chung-Hung.  2022.  Model-Based Deep Learning for Cyber-Attack Detection in Electric Drive Systems. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). :567–573.
Modern cyber-physical systems that comprise controlled power electronics are becoming more internet-of-things-enabled and vulnerable to cyber-attacks. Therefore, hardening those systems against cyber-attacks becomes an emerging need. In this paper, a model-based deep learning cyber-attack detection to protect electric drive systems from cyber-attacks on the physical level is proposed. The approach combines the model physics with a deep learning-based classifier. The combination of model-based and deep learning will enable more accurate cyber-attack detection results. The proposed cyber-attack detector will be trained and simulated on a PM based electric drive system to detect false data injection attacks on the drive controller command and sensor signals.
ISSN: 2470-6647
2022-10-13
Singh, Shweta, Singh, M.P., Pandey, Ramprakash.  2020.  Phishing Detection from URLs Using Deep Learning Approach. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—4.
Today, the Internet covers worldwide. All over the world, people prefer an E-commerce platform to buy or sell their products. Therefore, cybercrime has become the center of attraction for cyber attackers in cyberspace. Phishing is one such technique where the unidentified structure of the Internet has been used by attackers/criminals that intend to deceive users with the use of the illusory website and emails for obtaining their credentials (like account numbers, passwords, and PINs). Consequently, the identification of a phishing or legitimate web page is a challenging issue due to its semantic structure. In this paper, a phishing detection system is implemented using deep learning techniques to prevent such attacks. The system works on URLs by applying a convolutional neural network (CNN) to detect the phishing webpage. In paper [19] the proposed model has achieved 97.98% accuracy whereas our proposed system achieved accuracy of 98.00% which is better than earlier model. This system doesn’t require any feature engineering as the CNN extract features from the URLs automatically through its hidden layers. This is other advantage of the proposed system over earlier reported in [19] as the feature engineering is a very time-consuming task.
2020-09-18
Zhang, Fan, Kodituwakku, Hansaka Angel Dias Edirisinghe, Hines, J. Wesley, Coble, Jamie.  2019.  Multilayer Data-Driven Cyber-Attack Detection System for Industrial Control Systems Based on Network, System, and Process Data. IEEE Transactions on Industrial Informatics. 15:4362—4369.
The growing number of attacks against cyber-physical systems in recent years elevates the concern for cybersecurity of industrial control systems (ICSs). The current efforts of ICS cybersecurity are mainly based on firewalls, data diodes, and other methods of intrusion prevention, which may not be sufficient for growing cyber threats from motivated attackers. To enhance the cybersecurity of ICS, a cyber-attack detection system built on the concept of defense-in-depth is developed utilizing network traffic data, host system data, and measured process parameters. This attack detection system provides multiple-layer defense in order to gain the defenders precious time before unrecoverable consequences occur in the physical system. The data used for demonstrating the proposed detection system are from a real-time ICS testbed. Five attacks, including man in the middle (MITM), denial of service (DoS), data exfiltration, data tampering, and false data injection, are carried out to simulate the consequences of cyber attack and generate data for building data-driven detection models. Four classical classification models based on network data and host system data are studied, including k-nearest neighbor (KNN), decision tree, bootstrap aggregating (bagging), and random forest (RF), to provide a secondary line of defense of cyber-attack detection in the event that the intrusion prevention layer fails. Intrusion detection results suggest that KNN, bagging, and RF have low missed alarm and false alarm rates for MITM and DoS attacks, providing accurate and reliable detection of these cyber attacks. Cyber attacks that may not be detectable by monitoring network and host system data, such as command tampering and false data injection attacks by an insider, are monitored for by traditional process monitoring protocols. In the proposed detection system, an auto-associative kernel regression model is studied to strengthen early attack detection. The result shows that this approach detects physically impactful cyber attacks before significant consequences occur. The proposed multiple-layer data-driven cyber-attack detection system utilizing network, system, and process data is a promising solution for safeguarding an ICS.
2020-05-08
Lavrova, Daria, Zegzhda, Dmitry, Yarmak, Anastasiia.  2019.  Using GRU neural network for cyber-attack detection in automated process control systems. 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1—3.
This paper provides an approach to the detection of information security breaches in automated process control systems (APCS), which consists in forecasting multivariate time series formed from the values of the operating parameters of the end system devices. Using an experimental model of water treatment, a comparison was made of the forecasting results for the parameters characterizing the operation of the entire model, and for the parameters characterizing the flow of individual subprocesses implemented by the model. For forecasting, GRU-neural network training was performed.
2018-07-18
Terai, A., Abe, S., Kojima, S., Takano, Y., Koshijima, I..  2017.  Cyber-Attack Detection for Industrial Control System Monitoring with Support Vector Machine Based on Communication Profile. 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :132–138.

Industrial control systems (ICS) used in industrial plants are vulnerable to cyber-attacks that can cause fatal damage to the plants. Intrusion detection systems (IDSs) monitor ICS network traffic and detect suspicious activities. However, many IDSs overlook sophisticated cyber-attacks because it is hard to make a complete database of cyber-attacks and distinguish operational anomalies when compared to an established baseline. In this paper, a discriminant model between normal and anomalous packets was constructed with a support vector machine (SVM) based on an ICS communication profile, which represents only packet intervals and length, and an IDS with the applied model is proposed. Furthermore, the proposed IDS was evaluated using penetration tests on our cyber security test bed. Although the IDS was constructed by the limited features (intervals and length) of packets, the IDS successfully detected cyber-attacks by monitoring the rate of predicted attacking packets.

2018-04-11
Ghanem, K., Aparicio-Navarro, F. J., Kyriakopoulos, K. G., Lambotharan, S., Chambers, J. A..  2017.  Support Vector Machine for Network Intrusion and Cyber-Attack Detection. 2017 Sensor Signal Processing for Defence Conference (SSPD). :1–5.

Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non- linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non- homogeneous features.

2018-04-04
Yaseen, A. A., Bayart, M..  2017.  Cyber-attack detection in the networked control system with faulty plant. 2017 25th Mediterranean Conference on Control and Automation (MED). :980–985.

In this paper, the mathematical framework of behavioral system will be applied to detect the cyber-attack on the networked control system which is used to control the remotely operated underwater vehicle ROV. The Intelligent Generalized Predictive Controller IGPC is used to control the ROV. The IGPC is designed with fault-tolerant ability. In consequence of the used fault accommodation technique, the proposed cyber-attacks detector is able to clearly detect the presence of attacker control signal and to distinguish between the effects of the attacker signal and fault on the plant side. The test result of the suggested method demonstrates that it can be considerably used for detection of the cyber-attack.

2018-02-21
Elsaeidy, A., Elgendi, I., Munasinghe, K. S., Sharma, D., Jamalipour, A..  2017.  A smart city cyber security platform for narrowband networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Smart city is gaining a significant attention all around the world. Narrowband technologies would have strong impact on achieving the smart city promises to its citizens with its powerful and efficient spectrum. The expected diversity of applications, different data structures and high volume of connecting devices for smart cities increase the persistent need to apply narrowband technologies. However, narrowband technologies have recognized limitations regarding security which make them an attractive target to cyber-attacks. In this paper, a novel platform architecture to secure smart city against cyber attackers is presented. The framework is providing a threat deep learning-based model to detect attackers based on users data behavior. The proposed architecture could be considered as an attempt toward developing a universal model to identify and block Denial of Service (DoS) attackers in a real time for smart city applications.

2017-03-07
Hu, Zhiyong, Baynard, C. W., Hu, Hongda, Fazio, M..  2015.  GIS mapping and spatial analysis of cybersecurity attacks on a florida university. 2015 23rd International Conference on Geoinformatics. :1–5.

As the centers of knowledge, discovery, and intellectual exploration, US universities provide appealing cybersecurity targets. Cyberattack origin patterns and relationships are not evident until data is visualized in maps and tested with statistical models. The current cybersecurity threat detection software utilized by University of North Florida's IT department records large amounts of attacks and attempted intrusions by the minute. This paper presents GIS mapping and spatial analysis of cybersecurity attacks on UNF. First, locations of cyberattack origins were detected by geographic Internet Protocol (GEO-IP) software. Second, GIS was used to map the cyberattack origin locations. Third, we used advanced spatial statistical analysis functions (exploratory spatial data analysis and spatial point pattern analysis) and R software to explore cyberattack patterns. The spatial perspective we promote is novel because there are few studies employing location analytics and spatial statistics in cyber-attack detection and prevention research.